基于有偏邻域抽样的有向图神经网络

Srinivas Virinchi, Anoop Saladi
{"title":"基于有偏邻域抽样的有向图神经网络","authors":"Srinivas Virinchi, Anoop Saladi","doi":"10.1145/3539597.3570430","DOIUrl":null,"url":null,"abstract":"Directed graphs are ubiquitous and have applications across multiple domains including citation, website, social, and traffic networks. Yet, majority of research involving graph neural networks (GNNs) focus on undirected graphs. In this paper, we deal with the problem of node recommendation in directed graphs. Specifically, given a directed graph and query node as input, the goal is to recommend top- nodes that have a high likelihood of a link with the query node. Here we propose BLADE, a novel GNN to model directed graphs. In order to jointly capture link likelihood and link direction, we employ an asymmetric loss function and learn dual embeddings for each node, by appropriately aggregating features from its neighborhood. In order to achieve optimal performance on both low and high-degree nodes, we employ a biased neighborhood sampling scheme that generates locally varying neighborhoods which differ based on a node's connectivity structure. Extensive experimentation on several open-source and proprietary directed graphs show that BLADE outperforms state-of-the-art baselines by 6-230% in terms of HitRate and MRR for the node recommendation task and 10.5% in terms of AUC for the link direction prediction task. We perform ablation study to accentuate the importance of biased neighborhood sampling employed in generating higher quality recommendations for both low-degree and high-degree query nodes. Further, BLADE delivers significant improvement in revenue and sales as measured through an A/B experiment.","PeriodicalId":227804,"journal":{"name":"Proceedings of the Sixteenth ACM International Conference on Web Search and Data Mining","volume":"97 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"BLADE: Biased Neighborhood Sampling based Graph Neural Network for Directed Graphs\",\"authors\":\"Srinivas Virinchi, Anoop Saladi\",\"doi\":\"10.1145/3539597.3570430\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Directed graphs are ubiquitous and have applications across multiple domains including citation, website, social, and traffic networks. Yet, majority of research involving graph neural networks (GNNs) focus on undirected graphs. In this paper, we deal with the problem of node recommendation in directed graphs. Specifically, given a directed graph and query node as input, the goal is to recommend top- nodes that have a high likelihood of a link with the query node. Here we propose BLADE, a novel GNN to model directed graphs. In order to jointly capture link likelihood and link direction, we employ an asymmetric loss function and learn dual embeddings for each node, by appropriately aggregating features from its neighborhood. In order to achieve optimal performance on both low and high-degree nodes, we employ a biased neighborhood sampling scheme that generates locally varying neighborhoods which differ based on a node's connectivity structure. Extensive experimentation on several open-source and proprietary directed graphs show that BLADE outperforms state-of-the-art baselines by 6-230% in terms of HitRate and MRR for the node recommendation task and 10.5% in terms of AUC for the link direction prediction task. We perform ablation study to accentuate the importance of biased neighborhood sampling employed in generating higher quality recommendations for both low-degree and high-degree query nodes. Further, BLADE delivers significant improvement in revenue and sales as measured through an A/B experiment.\",\"PeriodicalId\":227804,\"journal\":{\"name\":\"Proceedings of the Sixteenth ACM International Conference on Web Search and Data Mining\",\"volume\":\"97 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-02-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Sixteenth ACM International Conference on Web Search and Data Mining\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3539597.3570430\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Sixteenth ACM International Conference on Web Search and Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3539597.3570430","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

有向图无处不在,在多个领域都有应用,包括引文、网站、社交和交通网络。然而,大多数涉及图神经网络(gnn)的研究都集中在无向图上。本文研究了有向图中的节点推荐问题。具体来说,给定有向图和查询节点作为输入,目标是推荐与查询节点有高链接可能性的顶级节点。本文提出了一种用于有向图建模的新型GNN - BLADE。为了共同捕获链接似然和链接方向,我们采用非对称损失函数,并通过适当地聚合其邻域的特征来学习每个节点的对偶嵌入。为了在低度和高度节点上获得最佳性能,我们采用了一种有偏差的邻域采样方案,该方案根据节点的连接结构产生局部变化的邻域。在几个开源和专有的有向图上进行的大量实验表明,BLADE在节点推荐任务的点击率和MRR方面优于最先进的基线6-230%,在链接方向预测任务的AUC方面优于最先进的基线10.5%。我们进行了消融研究,以强调在为低度和高度查询节点生成更高质量建议时所采用的有偏邻域抽样的重要性。此外,通过A/B实验,BLADE在收入和销售方面提供了显著的改善。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
BLADE: Biased Neighborhood Sampling based Graph Neural Network for Directed Graphs
Directed graphs are ubiquitous and have applications across multiple domains including citation, website, social, and traffic networks. Yet, majority of research involving graph neural networks (GNNs) focus on undirected graphs. In this paper, we deal with the problem of node recommendation in directed graphs. Specifically, given a directed graph and query node as input, the goal is to recommend top- nodes that have a high likelihood of a link with the query node. Here we propose BLADE, a novel GNN to model directed graphs. In order to jointly capture link likelihood and link direction, we employ an asymmetric loss function and learn dual embeddings for each node, by appropriately aggregating features from its neighborhood. In order to achieve optimal performance on both low and high-degree nodes, we employ a biased neighborhood sampling scheme that generates locally varying neighborhoods which differ based on a node's connectivity structure. Extensive experimentation on several open-source and proprietary directed graphs show that BLADE outperforms state-of-the-art baselines by 6-230% in terms of HitRate and MRR for the node recommendation task and 10.5% in terms of AUC for the link direction prediction task. We perform ablation study to accentuate the importance of biased neighborhood sampling employed in generating higher quality recommendations for both low-degree and high-degree query nodes. Further, BLADE delivers significant improvement in revenue and sales as measured through an A/B experiment.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信