状态反馈和静态输出反馈的参数化及其应用

Y. Peretz
{"title":"状态反馈和静态输出反馈的参数化及其应用","authors":"Y. Peretz","doi":"10.5772/intechopen.101176","DOIUrl":null,"url":null,"abstract":"In this chapter, we provide an explicit free parametrization of all the stabilizing static state feedbacks for continuous-time Linear-Time-Invariant (LTI) systems, which are given in their state-space representation. The parametrization of the set of all the stabilizing static output feedbacks is next derived by imposing a linear constraint on the stabilizing static state feedbacks of a related system. The parametrizations are utilized for optimal control problems and for pole-placement and exact pole-assignment problems.","PeriodicalId":426434,"journal":{"name":"Control Theory in Engineering [Working Title]","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On Parametrizations of State Feedbacks and Static Output Feedbacks and Their Applications\",\"authors\":\"Y. Peretz\",\"doi\":\"10.5772/intechopen.101176\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this chapter, we provide an explicit free parametrization of all the stabilizing static state feedbacks for continuous-time Linear-Time-Invariant (LTI) systems, which are given in their state-space representation. The parametrization of the set of all the stabilizing static output feedbacks is next derived by imposing a linear constraint on the stabilizing static state feedbacks of a related system. The parametrizations are utilized for optimal control problems and for pole-placement and exact pole-assignment problems.\",\"PeriodicalId\":426434,\"journal\":{\"name\":\"Control Theory in Engineering [Working Title]\",\"volume\":\"40 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Control Theory in Engineering [Working Title]\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5772/intechopen.101176\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Control Theory in Engineering [Working Title]","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5772/intechopen.101176","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本章中,我们给出了连续时间线性-时不变(LTI)系统的所有稳定静态反馈的显式自由参数化,并给出了它们的状态空间表示。然后,通过对相关系统的稳定静态反馈施加线性约束,推导出所有稳定静态输出反馈集合的参数化。参数化用于最优控制问题以及极点配置和精确极点分配问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On Parametrizations of State Feedbacks and Static Output Feedbacks and Their Applications
In this chapter, we provide an explicit free parametrization of all the stabilizing static state feedbacks for continuous-time Linear-Time-Invariant (LTI) systems, which are given in their state-space representation. The parametrization of the set of all the stabilizing static output feedbacks is next derived by imposing a linear constraint on the stabilizing static state feedbacks of a related system. The parametrizations are utilized for optimal control problems and for pole-placement and exact pole-assignment problems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信