基于融合方法的仇恨语音检测

Muhammad Sajjad, Fatima Zulifqar, Muhammad Usman Ghani Khan, Muhammad Azeem
{"title":"基于融合方法的仇恨语音检测","authors":"Muhammad Sajjad, Fatima Zulifqar, Muhammad Usman Ghani Khan, Muhammad Azeem","doi":"10.1109/ICAEM.2019.8853762","DOIUrl":null,"url":null,"abstract":"Detection of hate speech in user-generated online content has become an issue of increasing importance in recent years and is discerning for applications such as disputed event identification and sentiment analysis. Text classification for online content is a bit challenging task due to the natural language complexity and hastily generated online user microblogs including a plethora of informality and mistakes. This work introduces a system to classify tweets in three categories (i.e., racism, sexism and none). In our classification strategy, we integrate deep features extracted from Convolutional Neural Network(CNN) trained on semantic word embedding with state-of-the-art syntactic and word n-gram features. We perform comprehensive experiments on a standard dataset containing 16k manually annotated tweets. Our proposed approach outperform all other state-of-the-art approaches with a significant increase in accuracy.","PeriodicalId":304208,"journal":{"name":"2019 International Conference on Applied and Engineering Mathematics (ICAEM)","volume":"338 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"Hate Speech Detection using Fusion Approach\",\"authors\":\"Muhammad Sajjad, Fatima Zulifqar, Muhammad Usman Ghani Khan, Muhammad Azeem\",\"doi\":\"10.1109/ICAEM.2019.8853762\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Detection of hate speech in user-generated online content has become an issue of increasing importance in recent years and is discerning for applications such as disputed event identification and sentiment analysis. Text classification for online content is a bit challenging task due to the natural language complexity and hastily generated online user microblogs including a plethora of informality and mistakes. This work introduces a system to classify tweets in three categories (i.e., racism, sexism and none). In our classification strategy, we integrate deep features extracted from Convolutional Neural Network(CNN) trained on semantic word embedding with state-of-the-art syntactic and word n-gram features. We perform comprehensive experiments on a standard dataset containing 16k manually annotated tweets. Our proposed approach outperform all other state-of-the-art approaches with a significant increase in accuracy.\",\"PeriodicalId\":304208,\"journal\":{\"name\":\"2019 International Conference on Applied and Engineering Mathematics (ICAEM)\",\"volume\":\"338 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 International Conference on Applied and Engineering Mathematics (ICAEM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICAEM.2019.8853762\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Applied and Engineering Mathematics (ICAEM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAEM.2019.8853762","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

摘要

近年来,在用户生成的在线内容中检测仇恨言论已经成为一个越来越重要的问题,对于争议事件识别和情绪分析等应用来说,这是一个非常重要的问题。由于自然语言的复杂性和匆忙生成的在线用户微博,包括大量的非正式和错误,在线内容的文本分类是一项有点挑战性的任务。本文介绍了一个将推文分为三类(即种族主义、性别歧视和无)的系统。在我们的分类策略中,我们将从经过语义词嵌入训练的卷积神经网络(CNN)中提取的深度特征与最先进的句法和词n-gram特征相结合。我们在一个包含16k条手动注释推文的标准数据集上进行了全面的实验。我们提出的方法优于所有其他最先进的方法,精度显著提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hate Speech Detection using Fusion Approach
Detection of hate speech in user-generated online content has become an issue of increasing importance in recent years and is discerning for applications such as disputed event identification and sentiment analysis. Text classification for online content is a bit challenging task due to the natural language complexity and hastily generated online user microblogs including a plethora of informality and mistakes. This work introduces a system to classify tweets in three categories (i.e., racism, sexism and none). In our classification strategy, we integrate deep features extracted from Convolutional Neural Network(CNN) trained on semantic word embedding with state-of-the-art syntactic and word n-gram features. We perform comprehensive experiments on a standard dataset containing 16k manually annotated tweets. Our proposed approach outperform all other state-of-the-art approaches with a significant increase in accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信