双线性知识图补全模型中的无监督型约束推理

Yuxun Lu, R. Ichise
{"title":"双线性知识图补全模型中的无监督型约束推理","authors":"Yuxun Lu, R. Ichise","doi":"10.1109/ICKG52313.2021.00012","DOIUrl":null,"url":null,"abstract":"Knowledge graph completion (KGC) models aim to provide a feasible way of manipulating facts in knowledge graphs. Most KGC models do not consider type constraint in relations due to the scarcity of type information in training data. We proposed an unsupervised method for inferring type constraint based on existing bilinear KGC models. Our method induces two type indicators into every relation and adjusts the location of entity embeddings in feature space to match the type indicators. Our approach eliminates the external feature space for entity types and type constraints in relations and has a consistent feature space; therefore, it has fewer parameters than other methods. Experiments show that our methods can improve the performance of the base models and outperform other methods on datasets about general knowledge.","PeriodicalId":174126,"journal":{"name":"2021 IEEE International Conference on Big Knowledge (ICBK)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unsupervised Type Constraint Inference in Bilinear Knowledge Graph Completion Models\",\"authors\":\"Yuxun Lu, R. Ichise\",\"doi\":\"10.1109/ICKG52313.2021.00012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Knowledge graph completion (KGC) models aim to provide a feasible way of manipulating facts in knowledge graphs. Most KGC models do not consider type constraint in relations due to the scarcity of type information in training data. We proposed an unsupervised method for inferring type constraint based on existing bilinear KGC models. Our method induces two type indicators into every relation and adjusts the location of entity embeddings in feature space to match the type indicators. Our approach eliminates the external feature space for entity types and type constraints in relations and has a consistent feature space; therefore, it has fewer parameters than other methods. Experiments show that our methods can improve the performance of the base models and outperform other methods on datasets about general knowledge.\",\"PeriodicalId\":174126,\"journal\":{\"name\":\"2021 IEEE International Conference on Big Knowledge (ICBK)\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE International Conference on Big Knowledge (ICBK)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICKG52313.2021.00012\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Big Knowledge (ICBK)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICKG52313.2021.00012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

知识图谱补全(KGC)模型旨在提供一种可行的方法来操纵知识图谱中的事实。由于训练数据中类型信息的稀缺性,大多数KGC模型没有考虑关系中的类型约束。基于已有的双线性KGC模型,提出了一种推断类型约束的无监督方法。该方法在每个关系中引入两个类型指标,并调整实体嵌入在特征空间中的位置以匹配类型指标。该方法消除了实体类型的外部特征空间和关系中的类型约束,具有一致的特征空间;因此,它的参数比其他方法少。实验表明,我们的方法可以提高基本模型的性能,并且在关于一般知识的数据集上优于其他方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Unsupervised Type Constraint Inference in Bilinear Knowledge Graph Completion Models
Knowledge graph completion (KGC) models aim to provide a feasible way of manipulating facts in knowledge graphs. Most KGC models do not consider type constraint in relations due to the scarcity of type information in training data. We proposed an unsupervised method for inferring type constraint based on existing bilinear KGC models. Our method induces two type indicators into every relation and adjusts the location of entity embeddings in feature space to match the type indicators. Our approach eliminates the external feature space for entity types and type constraints in relations and has a consistent feature space; therefore, it has fewer parameters than other methods. Experiments show that our methods can improve the performance of the base models and outperform other methods on datasets about general knowledge.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信