Spar(k)ql: Spark GraphX上的SPARQL评估方法

G. Gombos, G. Rácz, A. Kiss
{"title":"Spar(k)ql: Spark GraphX上的SPARQL评估方法","authors":"G. Gombos, G. Rácz, A. Kiss","doi":"10.1109/W-FiCloud.2016.48","DOIUrl":null,"url":null,"abstract":"RDF is a flexible data representation model. Due to its flexibility and simplicity it has become a popular framework, hence the amount of RDF data is increasing fast. Querying massive amount of data is a serious challenge in general and it is true for RDF data as well. In this paper we investigating how to evaluate SPARQL queries on a distributed system. We propose a novel method for evaluating SPARQL queries using the GraphX graph analytical tool. GraphX is built on the top of Spark that is an in-memory data processing system for distributive computation. With this tool we managed to utilize the graph-like structure of the RDF statements which are in form of subject-predicate-object.","PeriodicalId":441441,"journal":{"name":"2016 IEEE 4th International Conference on Future Internet of Things and Cloud Workshops (FiCloudW)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Spar(k)ql: SPARQL Evaluation Method on Spark GraphX\",\"authors\":\"G. Gombos, G. Rácz, A. Kiss\",\"doi\":\"10.1109/W-FiCloud.2016.48\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"RDF is a flexible data representation model. Due to its flexibility and simplicity it has become a popular framework, hence the amount of RDF data is increasing fast. Querying massive amount of data is a serious challenge in general and it is true for RDF data as well. In this paper we investigating how to evaluate SPARQL queries on a distributed system. We propose a novel method for evaluating SPARQL queries using the GraphX graph analytical tool. GraphX is built on the top of Spark that is an in-memory data processing system for distributive computation. With this tool we managed to utilize the graph-like structure of the RDF statements which are in form of subject-predicate-object.\",\"PeriodicalId\":441441,\"journal\":{\"name\":\"2016 IEEE 4th International Conference on Future Internet of Things and Cloud Workshops (FiCloudW)\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE 4th International Conference on Future Internet of Things and Cloud Workshops (FiCloudW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/W-FiCloud.2016.48\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 4th International Conference on Future Internet of Things and Cloud Workshops (FiCloudW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/W-FiCloud.2016.48","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

RDF是一种灵活的数据表示模型。由于它的灵活性和简单性,它已经成为一个流行的框架,因此RDF数据的数量正在快速增长。通常,查询大量数据是一项严峻的挑战,对于RDF数据也是如此。在本文中,我们研究了如何评估分布式系统上的SPARQL查询。我们提出了一种使用GraphX图分析工具评估SPARQL查询的新方法。GraphX是建立在Spark之上的,Spark是一个用于分布式计算的内存数据处理系统。通过这个工具,我们成功地利用了主体-谓词-对象形式的RDF语句的类图结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Spar(k)ql: SPARQL Evaluation Method on Spark GraphX
RDF is a flexible data representation model. Due to its flexibility and simplicity it has become a popular framework, hence the amount of RDF data is increasing fast. Querying massive amount of data is a serious challenge in general and it is true for RDF data as well. In this paper we investigating how to evaluate SPARQL queries on a distributed system. We propose a novel method for evaluating SPARQL queries using the GraphX graph analytical tool. GraphX is built on the top of Spark that is an in-memory data processing system for distributive computation. With this tool we managed to utilize the graph-like structure of the RDF statements which are in form of subject-predicate-object.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信