基于时空视频分割和聚类集成的运动目标快速跟踪算法

Yumi Monma, L. S. Silva, J. Scharcanski
{"title":"基于时空视频分割和聚类集成的运动目标快速跟踪算法","authors":"Yumi Monma, L. S. Silva, J. Scharcanski","doi":"10.1109/I2MTC.2015.7151235","DOIUrl":null,"url":null,"abstract":"This paper presents a fast algorithm to segment moving objects in video sequences, as the first step of a fast object tracking system. It is based on the detection of level lines to detect closed objects contours in a scene. The detected objects are clustered using a combination of mean shift and ensemble clustering. The proposed method produces a temporal video segmentation in a fraction of the processing time required by comparable state-of-the-art particle-based methods.","PeriodicalId":424006,"journal":{"name":"2015 IEEE International Instrumentation and Measurement Technology Conference (I2MTC) Proceedings","volume":"117 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A fast algorithm for tracking moving objects based on spatio-temporal video segmentation and cluster ensembles\",\"authors\":\"Yumi Monma, L. S. Silva, J. Scharcanski\",\"doi\":\"10.1109/I2MTC.2015.7151235\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a fast algorithm to segment moving objects in video sequences, as the first step of a fast object tracking system. It is based on the detection of level lines to detect closed objects contours in a scene. The detected objects are clustered using a combination of mean shift and ensemble clustering. The proposed method produces a temporal video segmentation in a fraction of the processing time required by comparable state-of-the-art particle-based methods.\",\"PeriodicalId\":424006,\"journal\":{\"name\":\"2015 IEEE International Instrumentation and Measurement Technology Conference (I2MTC) Proceedings\",\"volume\":\"117 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-05-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE International Instrumentation and Measurement Technology Conference (I2MTC) Proceedings\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/I2MTC.2015.7151235\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Instrumentation and Measurement Technology Conference (I2MTC) Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/I2MTC.2015.7151235","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文提出了一种快速分割视频序列中运动目标的算法,作为快速目标跟踪系统的第一步。它是基于水平线的检测来检测场景中封闭物体的轮廓。检测到的目标使用平均移位和集成聚类的组合聚类。所提出的方法产生的时间视频分割所需的处理时间的一小部分,由比较先进的基于粒子的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A fast algorithm for tracking moving objects based on spatio-temporal video segmentation and cluster ensembles
This paper presents a fast algorithm to segment moving objects in video sequences, as the first step of a fast object tracking system. It is based on the detection of level lines to detect closed objects contours in a scene. The detected objects are clustered using a combination of mean shift and ensemble clustering. The proposed method produces a temporal video segmentation in a fraction of the processing time required by comparable state-of-the-art particle-based methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信