Russel Mesbah, B. McCane, S. Mills
{"title":"Conditional random fields incorporate convolutional neural networks for human eye sclera semantic segmentation","authors":"Russel Mesbah, B. McCane, S. Mills","doi":"10.1109/BTAS.2017.8272768","DOIUrl":null,"url":null,"abstract":"Sclera segmentation as an ocular biometric has been of an interest in a variety of security and medical applications. The current approaches mostly rely on handcrafted features which make the generalisation of the learnt hypothesis challenging encountering images taken from various angles, and in different visible light spectrums. Convolutional Neural Networks (CNNs) are capable of extracting the corresponding features automatically. Despite the fact that CNNs showed a remarkable performance in a variety of image semantic segmentations, the output can be noisy and less accurate particularly in object boundaries. To address this issue, we have used Conditional Random Fields (CRFs) to regulate the CNN outputs. The results of applying this technique to sclera segmentation dataset (SSERBC 2017) are comparable with the state of the art solutions.","PeriodicalId":372008,"journal":{"name":"2017 IEEE International Joint Conference on Biometrics (IJCB)","volume":"480 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Joint Conference on Biometrics (IJCB)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BTAS.2017.8272768","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

巩膜分割作为一种眼部生物识别技术已经在各种安全和医学应用中引起了人们的兴趣。目前的方法主要依赖于手工制作的特征,这使得从不同角度和不同可见光光谱拍摄的图像难以概括所学假设。卷积神经网络(cnn)能够自动提取相应的特征。尽管cnn在各种图像语义分割中表现出色,但输出可能会有噪声,特别是在物体边界上的准确性较低。为了解决这个问题,我们使用条件随机场(CRFs)来调节CNN输出。将该技术应用于巩膜分割数据集(SSERBC 2017)的结果与最先进的解决方案相当。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Conditional random fields incorporate convolutional neural networks for human eye sclera semantic segmentation
Sclera segmentation as an ocular biometric has been of an interest in a variety of security and medical applications. The current approaches mostly rely on handcrafted features which make the generalisation of the learnt hypothesis challenging encountering images taken from various angles, and in different visible light spectrums. Convolutional Neural Networks (CNNs) are capable of extracting the corresponding features automatically. Despite the fact that CNNs showed a remarkable performance in a variety of image semantic segmentations, the output can be noisy and less accurate particularly in object boundaries. To address this issue, we have used Conditional Random Fields (CRFs) to regulate the CNN outputs. The results of applying this technique to sclera segmentation dataset (SSERBC 2017) are comparable with the state of the art solutions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信