线性规划的一种新的不可行内点算法

M. Argáez, L. Velázquez
{"title":"线性规划的一种新的不可行内点算法","authors":"M. Argáez, L. Velázquez","doi":"10.1145/948542.948545","DOIUrl":null,"url":null,"abstract":"In this paper we present an infeasible path-following interior-point algorithm for solving linear programs using a relaxed notion of the central path, called quasicentral path, as a central region. The algorithm starts from an infeasible point which satisfies that the norm of the dual condition is less than the norm of the primal condition. We use weighted sets as proximity measures of the quasicentral path, and a new merit function for making progress toward this central region. We test the algorithm on a set of NETLIB problems obtaining promising numerical results.","PeriodicalId":326471,"journal":{"name":"Richard Tapia Celebration of Diversity in Computing Conference","volume":"84 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"A new infeasible interior-point algorithm for linear programming\",\"authors\":\"M. Argáez, L. Velázquez\",\"doi\":\"10.1145/948542.948545\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we present an infeasible path-following interior-point algorithm for solving linear programs using a relaxed notion of the central path, called quasicentral path, as a central region. The algorithm starts from an infeasible point which satisfies that the norm of the dual condition is less than the norm of the primal condition. We use weighted sets as proximity measures of the quasicentral path, and a new merit function for making progress toward this central region. We test the algorithm on a set of NETLIB problems obtaining promising numerical results.\",\"PeriodicalId\":326471,\"journal\":{\"name\":\"Richard Tapia Celebration of Diversity in Computing Conference\",\"volume\":\"84 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Richard Tapia Celebration of Diversity in Computing Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/948542.948545\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Richard Tapia Celebration of Diversity in Computing Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/948542.948545","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

本文提出了一种求解线性规划的不可行路径跟踪内点算法,该算法使用中心路径(拟中心路径)的松弛概念作为中心区域。该算法从满足对偶条件的范数小于原始条件范数的不可行点出发。我们使用加权集作为准中心路径的接近度量,并使用一个新的价值函数来向该中心区域前进。我们在一组NETLIB问题上对该算法进行了测试,得到了令人满意的数值结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A new infeasible interior-point algorithm for linear programming
In this paper we present an infeasible path-following interior-point algorithm for solving linear programs using a relaxed notion of the central path, called quasicentral path, as a central region. The algorithm starts from an infeasible point which satisfies that the norm of the dual condition is less than the norm of the primal condition. We use weighted sets as proximity measures of the quasicentral path, and a new merit function for making progress toward this central region. We test the algorithm on a set of NETLIB problems obtaining promising numerical results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信