支持车辆WiFi连接的上下文感知强化学习

Mushahid Hussain, Felipe França, Ana Aguiar
{"title":"支持车辆WiFi连接的上下文感知强化学习","authors":"Mushahid Hussain, Felipe França, Ana Aguiar","doi":"10.1109/VNC57357.2023.10136333","DOIUrl":null,"url":null,"abstract":"The continuously rising number of mobile users and applications drives spectrum scarcity. WiFi connectivity can help to reduce the load on cellular networks in urban areas for slow moving commuters if supported by adequate network management. This research explores reinforcement learning using context and network data to deal with the stochastic and dynamic nature of WiFi and provide continuous connectivity to a moving vehicle. We formulate the access point handoff problem as a Markov Decision Process (MDP) and solve it using Deep Q Network (DQN) applied to a real-world dataset. The observed pattern of learning in preliminary results indicates that the agent can learn from the real world dataset.","PeriodicalId":185840,"journal":{"name":"2023 IEEE Vehicular Networking Conference (VNC)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Context-Aware Reinforcement Learning for Supporting WiFi Connectivity for Vehicles\",\"authors\":\"Mushahid Hussain, Felipe França, Ana Aguiar\",\"doi\":\"10.1109/VNC57357.2023.10136333\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The continuously rising number of mobile users and applications drives spectrum scarcity. WiFi connectivity can help to reduce the load on cellular networks in urban areas for slow moving commuters if supported by adequate network management. This research explores reinforcement learning using context and network data to deal with the stochastic and dynamic nature of WiFi and provide continuous connectivity to a moving vehicle. We formulate the access point handoff problem as a Markov Decision Process (MDP) and solve it using Deep Q Network (DQN) applied to a real-world dataset. The observed pattern of learning in preliminary results indicates that the agent can learn from the real world dataset.\",\"PeriodicalId\":185840,\"journal\":{\"name\":\"2023 IEEE Vehicular Networking Conference (VNC)\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE Vehicular Networking Conference (VNC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/VNC57357.2023.10136333\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE Vehicular Networking Conference (VNC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VNC57357.2023.10136333","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

移动用户和应用数量的不断增加导致频谱稀缺。如果有足够的网络管理支持,WiFi连接可以帮助减少城市地区移动缓慢的通勤者的蜂窝网络负荷。本研究探索了使用上下文和网络数据来强化学习,以处理WiFi的随机性和动态性,并为移动车辆提供连续连接。我们将接入点切换问题表述为马尔可夫决策过程(MDP),并使用应用于真实数据集的深度Q网络(DQN)来解决它。在初步结果中观察到的学习模式表明智能体可以从真实世界的数据集中学习。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Context-Aware Reinforcement Learning for Supporting WiFi Connectivity for Vehicles
The continuously rising number of mobile users and applications drives spectrum scarcity. WiFi connectivity can help to reduce the load on cellular networks in urban areas for slow moving commuters if supported by adequate network management. This research explores reinforcement learning using context and network data to deal with the stochastic and dynamic nature of WiFi and provide continuous connectivity to a moving vehicle. We formulate the access point handoff problem as a Markov Decision Process (MDP) and solve it using Deep Q Network (DQN) applied to a real-world dataset. The observed pattern of learning in preliminary results indicates that the agent can learn from the real world dataset.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信