{"title":"双眼对应的主动维持导致视觉感受野的定向对齐","authors":"T. Chandrapala, Bertram E. Shi, J. Triesch","doi":"10.1109/DEVLRN.2015.7346122","DOIUrl":null,"url":null,"abstract":"Neural development in the visual cortex depends on the visual experience during the so-called critical period. Recent experiments have shown that under normal conditions rodents develop binocular receptive fields which have similar orientation preferences for the left and right eyes. In contrast, under conditions of monocular deprivation during the critical period, this orientation alignment does not happen. Here we propose a computational model to explain the process of orientation alignment, its underlying mechanisms, and its failure in case of monocular deprivation or uncorrelated binocular inputs. Our model is based on the recently proposed Active Efficient Coding framework that jointly develops eye movement control and sensory representations. Our model suggests that the active maintenance of a binocular visual field, which leads to correlated visual inputs from the two eyes, is essential for the process of orientation alignment. This behavior is analogous to vergence control in primates. However, due to the fact that rodents have large receptive fields with low spatial frequency tuning, the coordination of the eyes need not be very precise. The model also suggests that it is not necessary that coordinated binocular vision be maintained continuously in order for orientation alignment to develop.","PeriodicalId":164756,"journal":{"name":"2015 Joint IEEE International Conference on Development and Learning and Epigenetic Robotics (ICDL-EpiRob)","volume":"121 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Active maintenance of binocular correspondence leads to orientation alignment of visual receptive fields\",\"authors\":\"T. Chandrapala, Bertram E. Shi, J. Triesch\",\"doi\":\"10.1109/DEVLRN.2015.7346122\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Neural development in the visual cortex depends on the visual experience during the so-called critical period. Recent experiments have shown that under normal conditions rodents develop binocular receptive fields which have similar orientation preferences for the left and right eyes. In contrast, under conditions of monocular deprivation during the critical period, this orientation alignment does not happen. Here we propose a computational model to explain the process of orientation alignment, its underlying mechanisms, and its failure in case of monocular deprivation or uncorrelated binocular inputs. Our model is based on the recently proposed Active Efficient Coding framework that jointly develops eye movement control and sensory representations. Our model suggests that the active maintenance of a binocular visual field, which leads to correlated visual inputs from the two eyes, is essential for the process of orientation alignment. This behavior is analogous to vergence control in primates. However, due to the fact that rodents have large receptive fields with low spatial frequency tuning, the coordination of the eyes need not be very precise. The model also suggests that it is not necessary that coordinated binocular vision be maintained continuously in order for orientation alignment to develop.\",\"PeriodicalId\":164756,\"journal\":{\"name\":\"2015 Joint IEEE International Conference on Development and Learning and Epigenetic Robotics (ICDL-EpiRob)\",\"volume\":\"121 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-12-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 Joint IEEE International Conference on Development and Learning and Epigenetic Robotics (ICDL-EpiRob)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DEVLRN.2015.7346122\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 Joint IEEE International Conference on Development and Learning and Epigenetic Robotics (ICDL-EpiRob)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DEVLRN.2015.7346122","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Active maintenance of binocular correspondence leads to orientation alignment of visual receptive fields
Neural development in the visual cortex depends on the visual experience during the so-called critical period. Recent experiments have shown that under normal conditions rodents develop binocular receptive fields which have similar orientation preferences for the left and right eyes. In contrast, under conditions of monocular deprivation during the critical period, this orientation alignment does not happen. Here we propose a computational model to explain the process of orientation alignment, its underlying mechanisms, and its failure in case of monocular deprivation or uncorrelated binocular inputs. Our model is based on the recently proposed Active Efficient Coding framework that jointly develops eye movement control and sensory representations. Our model suggests that the active maintenance of a binocular visual field, which leads to correlated visual inputs from the two eyes, is essential for the process of orientation alignment. This behavior is analogous to vergence control in primates. However, due to the fact that rodents have large receptive fields with low spatial frequency tuning, the coordination of the eyes need not be very precise. The model also suggests that it is not necessary that coordinated binocular vision be maintained continuously in order for orientation alignment to develop.