利用非线性滤波器估计目标位置

S. Konatowski, P. Kaniewski, M. Łabowski
{"title":"利用非线性滤波器估计目标位置","authors":"S. Konatowski, P. Kaniewski, M. Łabowski","doi":"10.23919/IRS.2017.8008255","DOIUrl":null,"url":null,"abstract":"The paper presents chosen results of testing of non-linear filtering algorithms (an Extended Kalman Filter, two versions of Unscented Kalman Filters and a Particle Filter) in tracking applications. The accuracy of filters have been assessed and compared. The movement of tracked objects has been modeled in a Cartesian frame of reference, whereas the measurements are assumed to be realized in a polar frame of reference. The simulations have been realized under the assumption that the acceleration is described with the Univariate Non-Stationary Growth Model. All the tests have been performed in Matlab®.","PeriodicalId":430241,"journal":{"name":"2017 18th International Radar Symposium (IRS)","volume":"205 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Estimation of object position using non-linear filters\",\"authors\":\"S. Konatowski, P. Kaniewski, M. Łabowski\",\"doi\":\"10.23919/IRS.2017.8008255\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper presents chosen results of testing of non-linear filtering algorithms (an Extended Kalman Filter, two versions of Unscented Kalman Filters and a Particle Filter) in tracking applications. The accuracy of filters have been assessed and compared. The movement of tracked objects has been modeled in a Cartesian frame of reference, whereas the measurements are assumed to be realized in a polar frame of reference. The simulations have been realized under the assumption that the acceleration is described with the Univariate Non-Stationary Growth Model. All the tests have been performed in Matlab®.\",\"PeriodicalId\":430241,\"journal\":{\"name\":\"2017 18th International Radar Symposium (IRS)\",\"volume\":\"205 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 18th International Radar Symposium (IRS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/IRS.2017.8008255\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 18th International Radar Symposium (IRS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/IRS.2017.8008255","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文介绍了非线性滤波算法(扩展卡尔曼滤波,两个版本的无气味卡尔曼滤波和粒子滤波)在跟踪应用中的测试结果。对滤波器的精度进行了评价和比较。跟踪对象的运动在笛卡尔坐标系中建模,而测量假设在极坐标系中实现。在假设加速度用单变量非平稳增长模型描述的情况下,实现了仿真。所有的测试都在Matlab®中进行。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Estimation of object position using non-linear filters
The paper presents chosen results of testing of non-linear filtering algorithms (an Extended Kalman Filter, two versions of Unscented Kalman Filters and a Particle Filter) in tracking applications. The accuracy of filters have been assessed and compared. The movement of tracked objects has been modeled in a Cartesian frame of reference, whereas the measurements are assumed to be realized in a polar frame of reference. The simulations have been realized under the assumption that the acceleration is described with the Univariate Non-Stationary Growth Model. All the tests have been performed in Matlab®.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信