通信社区组织结构分析的一种算法

Ying Hou, Hao-xiang Shen, Lixiong Liu, Hai Huang
{"title":"通信社区组织结构分析的一种算法","authors":"Ying Hou, Hao-xiang Shen, Lixiong Liu, Hai Huang","doi":"10.1109/ICICISYS.2010.5658415","DOIUrl":null,"url":null,"abstract":"The purpose of communication community structure detection in a network is to cluster weighted complex network. By learning from traditional clustering algorithm, OPTICS, an algorithm is designed to detect communication community and analyze its structure. This algorithm considers the effect and detects communication community based on its communication intensity. The detection result is organized in multi distinguishing granular to provide hierarchical structural organization in the communication community. Experiments showed that this algorithm is effective in detecting communication community and analyzing organizational structure.","PeriodicalId":339711,"journal":{"name":"2010 IEEE International Conference on Intelligent Computing and Intelligent Systems","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An algorithm for communication community organizational structure analysis\",\"authors\":\"Ying Hou, Hao-xiang Shen, Lixiong Liu, Hai Huang\",\"doi\":\"10.1109/ICICISYS.2010.5658415\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The purpose of communication community structure detection in a network is to cluster weighted complex network. By learning from traditional clustering algorithm, OPTICS, an algorithm is designed to detect communication community and analyze its structure. This algorithm considers the effect and detects communication community based on its communication intensity. The detection result is organized in multi distinguishing granular to provide hierarchical structural organization in the communication community. Experiments showed that this algorithm is effective in detecting communication community and analyzing organizational structure.\",\"PeriodicalId\":339711,\"journal\":{\"name\":\"2010 IEEE International Conference on Intelligent Computing and Intelligent Systems\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-12-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE International Conference on Intelligent Computing and Intelligent Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICICISYS.2010.5658415\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Conference on Intelligent Computing and Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICICISYS.2010.5658415","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

网络中通信社团结构检测的目的是对加权复杂网络进行聚类。在借鉴传统聚类算法OPTICS的基础上,设计了一种检测通信社区并分析其结构的算法。该算法考虑了影响因素,并根据通信强度检测通信群体。将检测结果组织成多个区分粒度,为通信社区提供层次结构组织。实验表明,该算法在检测通信群体和分析组织结构方面是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An algorithm for communication community organizational structure analysis
The purpose of communication community structure detection in a network is to cluster weighted complex network. By learning from traditional clustering algorithm, OPTICS, an algorithm is designed to detect communication community and analyze its structure. This algorithm considers the effect and detects communication community based on its communication intensity. The detection result is organized in multi distinguishing granular to provide hierarchical structural organization in the communication community. Experiments showed that this algorithm is effective in detecting communication community and analyzing organizational structure.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信