{"title":"基于微分逆运动学控制的未知环境下移动操纵","authors":"Adam Heins, M. Jakob, Angela P. Schoellig","doi":"10.1109/CRV52889.2021.00017","DOIUrl":null,"url":null,"abstract":"Mobile manipulators combine the large workspace of mobile robots with the interactive capabilities of manipulator arms, making them useful in a variety of domains including construction and assistive care. We propose a differential inverse kinematics whole-body control approach for position-controlled industrial mobile manipulators. Our controller is capable of task-space trajectory tracking, force regulation, obstacle and singularity avoidance, and pushing an object toward a goal location, with limited sensing and knowledge of the environment. We evaluate the proposed approach through extensive experiments on a 9 degree-of-freedom omnidirectional mobile manipulator. A video demonstrating many of the experiments can be found at http://tiny.cc/crv21-mm.","PeriodicalId":413697,"journal":{"name":"2021 18th Conference on Robots and Vision (CRV)","volume":"117 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Mobile Manipulation in Unknown Environments with Differential Inverse Kinematics Control\",\"authors\":\"Adam Heins, M. Jakob, Angela P. Schoellig\",\"doi\":\"10.1109/CRV52889.2021.00017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Mobile manipulators combine the large workspace of mobile robots with the interactive capabilities of manipulator arms, making them useful in a variety of domains including construction and assistive care. We propose a differential inverse kinematics whole-body control approach for position-controlled industrial mobile manipulators. Our controller is capable of task-space trajectory tracking, force regulation, obstacle and singularity avoidance, and pushing an object toward a goal location, with limited sensing and knowledge of the environment. We evaluate the proposed approach through extensive experiments on a 9 degree-of-freedom omnidirectional mobile manipulator. A video demonstrating many of the experiments can be found at http://tiny.cc/crv21-mm.\",\"PeriodicalId\":413697,\"journal\":{\"name\":\"2021 18th Conference on Robots and Vision (CRV)\",\"volume\":\"117 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 18th Conference on Robots and Vision (CRV)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CRV52889.2021.00017\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 18th Conference on Robots and Vision (CRV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CRV52889.2021.00017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Mobile Manipulation in Unknown Environments with Differential Inverse Kinematics Control
Mobile manipulators combine the large workspace of mobile robots with the interactive capabilities of manipulator arms, making them useful in a variety of domains including construction and assistive care. We propose a differential inverse kinematics whole-body control approach for position-controlled industrial mobile manipulators. Our controller is capable of task-space trajectory tracking, force regulation, obstacle and singularity avoidance, and pushing an object toward a goal location, with limited sensing and knowledge of the environment. We evaluate the proposed approach through extensive experiments on a 9 degree-of-freedom omnidirectional mobile manipulator. A video demonstrating many of the experiments can be found at http://tiny.cc/crv21-mm.