{"title":"欧拉-柯西微分方程的特征方程及其MATLAB解法","authors":"S. Karthigai Selvam","doi":"10.51983/ajsat-2021.10.1.2792","DOIUrl":null,"url":null,"abstract":"The behavior of nature is usually modelled with Differential Equations in various forms. Depending on the constrains and the accuracy of a model, the connected equations may be more or less complicated. For simple models we may use Non Homogeneous Equations but in general, we have to deal with Homogeneous ones since from a physicists point of view nature seems to be Homogeneous. In many applications of sciences, for solving many of them, often appear equations of type nth order Linear differential equations, where the number of them is Euler-Cauchy differential equations. i.e. Euler-Cauchy differential equations often appear in analysis of computer algorithms, notably in analysis of quick sort and search trees; a number of physics and engineering applications. In this paper, the researcher aims to present the solutions of a homogeneous Euler-Cauchy differential equation from the roots of the characteristics equation related with this differential equation using MATLAB. It is hoped that this work can contribute to minimize the lag in teaching and learning of this important Ordinary Differential Equation.","PeriodicalId":414891,"journal":{"name":"Asian Journal of Science and Applied Technology","volume":"430 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Characteristic Equation of the Euler-Cauchy Differential Equation and its Related Solution Using MATLAB\",\"authors\":\"S. Karthigai Selvam\",\"doi\":\"10.51983/ajsat-2021.10.1.2792\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The behavior of nature is usually modelled with Differential Equations in various forms. Depending on the constrains and the accuracy of a model, the connected equations may be more or less complicated. For simple models we may use Non Homogeneous Equations but in general, we have to deal with Homogeneous ones since from a physicists point of view nature seems to be Homogeneous. In many applications of sciences, for solving many of them, often appear equations of type nth order Linear differential equations, where the number of them is Euler-Cauchy differential equations. i.e. Euler-Cauchy differential equations often appear in analysis of computer algorithms, notably in analysis of quick sort and search trees; a number of physics and engineering applications. In this paper, the researcher aims to present the solutions of a homogeneous Euler-Cauchy differential equation from the roots of the characteristics equation related with this differential equation using MATLAB. It is hoped that this work can contribute to minimize the lag in teaching and learning of this important Ordinary Differential Equation.\",\"PeriodicalId\":414891,\"journal\":{\"name\":\"Asian Journal of Science and Applied Technology\",\"volume\":\"430 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Asian Journal of Science and Applied Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.51983/ajsat-2021.10.1.2792\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asian Journal of Science and Applied Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.51983/ajsat-2021.10.1.2792","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The Characteristic Equation of the Euler-Cauchy Differential Equation and its Related Solution Using MATLAB
The behavior of nature is usually modelled with Differential Equations in various forms. Depending on the constrains and the accuracy of a model, the connected equations may be more or less complicated. For simple models we may use Non Homogeneous Equations but in general, we have to deal with Homogeneous ones since from a physicists point of view nature seems to be Homogeneous. In many applications of sciences, for solving many of them, often appear equations of type nth order Linear differential equations, where the number of them is Euler-Cauchy differential equations. i.e. Euler-Cauchy differential equations often appear in analysis of computer algorithms, notably in analysis of quick sort and search trees; a number of physics and engineering applications. In this paper, the researcher aims to present the solutions of a homogeneous Euler-Cauchy differential equation from the roots of the characteristics equation related with this differential equation using MATLAB. It is hoped that this work can contribute to minimize the lag in teaching and learning of this important Ordinary Differential Equation.