{"title":"金刚石薄膜气相生长机理的量子研究","authors":"Guang-pu Wei, T. Kita, H. Hakayama, T. Nishino","doi":"10.1117/12.300730","DOIUrl":null,"url":null,"abstract":"The growth mechanism of diamond films from low pressure vapor phase synthesis cannot be illustrated with classical thermodynamic theory. Up to now, a lot of growth methods were reported, but the growth mechanism was not so clear. In this paper, a variety of growth methods and growth conditions were summarized, and some tries to illustrate the growth mechanism of diamond film from the consideration of quantum mechanics bond theory were carried out. Particularly, some effects of atomic H and SP3 bond on the growth mechanism of diamond film were illustrated.","PeriodicalId":362287,"journal":{"name":"Thin Film Physics and Applications","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quantum approach to vapor phase growth mechanism of diamond film\",\"authors\":\"Guang-pu Wei, T. Kita, H. Hakayama, T. Nishino\",\"doi\":\"10.1117/12.300730\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The growth mechanism of diamond films from low pressure vapor phase synthesis cannot be illustrated with classical thermodynamic theory. Up to now, a lot of growth methods were reported, but the growth mechanism was not so clear. In this paper, a variety of growth methods and growth conditions were summarized, and some tries to illustrate the growth mechanism of diamond film from the consideration of quantum mechanics bond theory were carried out. Particularly, some effects of atomic H and SP3 bond on the growth mechanism of diamond film were illustrated.\",\"PeriodicalId\":362287,\"journal\":{\"name\":\"Thin Film Physics and Applications\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1998-02-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Thin Film Physics and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.300730\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Thin Film Physics and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.300730","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Quantum approach to vapor phase growth mechanism of diamond film
The growth mechanism of diamond films from low pressure vapor phase synthesis cannot be illustrated with classical thermodynamic theory. Up to now, a lot of growth methods were reported, but the growth mechanism was not so clear. In this paper, a variety of growth methods and growth conditions were summarized, and some tries to illustrate the growth mechanism of diamond film from the consideration of quantum mechanics bond theory were carried out. Particularly, some effects of atomic H and SP3 bond on the growth mechanism of diamond film were illustrated.