{"title":"定时偏序推理算法","authors":"Kandai Watanabe, Bardh Hoxha, D. Prokhorov, Georgios Fainekos, Morteza Lahijanian, Sriram Sankaranarayana, Tomoya Yamaguchi","doi":"10.48550/arXiv.2302.02501","DOIUrl":null,"url":null,"abstract":"In this work, we propose the model of timed partial orders (TPOs) for specifying workflow schedules, especially for modeling manufacturing processes. TPOs integrate partial orders over events in a workflow, specifying ``happens-before'' relations, with timing constraints specified using guards and resets on clocks -- an idea borrowed from timed-automata specifications. TPOs naturally allow us to capture event ordering, along with a restricted but useful class of timing relationships. Next, we consider the problem of mining TPO schedules from workflow logs, which include events along with their time stamps. We demonstrate a relationship between formulating TPOs and the graph-coloring problem, and present an algorithm for learning TPOs with correctness guarantees.\nWe demonstrate our approach on synthetic datasets, including two datasets inspired by real-life applications of aircraft turnaround and gameplay videos of the Overcooked computer game. Our TPO mining algorithm can infer TPOs involving hundreds of events from thousands of data-points within a few seconds. We show that the resulting TPOs provide useful insights into the dependencies and timing constraints for workflows.","PeriodicalId":239898,"journal":{"name":"International Conference on Automated Planning and Scheduling","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Timed Partial Order Inference Algorithm\",\"authors\":\"Kandai Watanabe, Bardh Hoxha, D. Prokhorov, Georgios Fainekos, Morteza Lahijanian, Sriram Sankaranarayana, Tomoya Yamaguchi\",\"doi\":\"10.48550/arXiv.2302.02501\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, we propose the model of timed partial orders (TPOs) for specifying workflow schedules, especially for modeling manufacturing processes. TPOs integrate partial orders over events in a workflow, specifying ``happens-before'' relations, with timing constraints specified using guards and resets on clocks -- an idea borrowed from timed-automata specifications. TPOs naturally allow us to capture event ordering, along with a restricted but useful class of timing relationships. Next, we consider the problem of mining TPO schedules from workflow logs, which include events along with their time stamps. We demonstrate a relationship between formulating TPOs and the graph-coloring problem, and present an algorithm for learning TPOs with correctness guarantees.\\nWe demonstrate our approach on synthetic datasets, including two datasets inspired by real-life applications of aircraft turnaround and gameplay videos of the Overcooked computer game. Our TPO mining algorithm can infer TPOs involving hundreds of events from thousands of data-points within a few seconds. We show that the resulting TPOs provide useful insights into the dependencies and timing constraints for workflows.\",\"PeriodicalId\":239898,\"journal\":{\"name\":\"International Conference on Automated Planning and Scheduling\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-02-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Automated Planning and Scheduling\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48550/arXiv.2302.02501\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Automated Planning and Scheduling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2302.02501","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
In this work, we propose the model of timed partial orders (TPOs) for specifying workflow schedules, especially for modeling manufacturing processes. TPOs integrate partial orders over events in a workflow, specifying ``happens-before'' relations, with timing constraints specified using guards and resets on clocks -- an idea borrowed from timed-automata specifications. TPOs naturally allow us to capture event ordering, along with a restricted but useful class of timing relationships. Next, we consider the problem of mining TPO schedules from workflow logs, which include events along with their time stamps. We demonstrate a relationship between formulating TPOs and the graph-coloring problem, and present an algorithm for learning TPOs with correctness guarantees.
We demonstrate our approach on synthetic datasets, including two datasets inspired by real-life applications of aircraft turnaround and gameplay videos of the Overcooked computer game. Our TPO mining algorithm can infer TPOs involving hundreds of events from thousands of data-points within a few seconds. We show that the resulting TPOs provide useful insights into the dependencies and timing constraints for workflows.