基于有界实平衡的二维离散系统降阶

W.-s. Lu
{"title":"基于有界实平衡的二维离散系统降阶","authors":"W.-s. Lu","doi":"10.1109/CDC.1988.194503","DOIUrl":null,"url":null,"abstract":"A novel order-reduction method for 2-D discrete systems based on bounded real (BR) balancing is presented. The concept of BR balancing was first introduced to reduce the order of 1-D continuous-time systems. It is shown that if the 2-D discrete system considered satisfies the 2-D Lyapunov condition, the BR balanced approximation then yields a stable low-order 2-D system with a reasonably small approximation error.<<ETX>>","PeriodicalId":113534,"journal":{"name":"Proceedings of the 27th IEEE Conference on Decision and Control","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1988-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Order reduction of 2-D discrete systems via bounded real balancing\",\"authors\":\"W.-s. Lu\",\"doi\":\"10.1109/CDC.1988.194503\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A novel order-reduction method for 2-D discrete systems based on bounded real (BR) balancing is presented. The concept of BR balancing was first introduced to reduce the order of 1-D continuous-time systems. It is shown that if the 2-D discrete system considered satisfies the 2-D Lyapunov condition, the BR balanced approximation then yields a stable low-order 2-D system with a reasonably small approximation error.<<ETX>>\",\"PeriodicalId\":113534,\"journal\":{\"name\":\"Proceedings of the 27th IEEE Conference on Decision and Control\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1988-12-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 27th IEEE Conference on Decision and Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CDC.1988.194503\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 27th IEEE Conference on Decision and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CDC.1988.194503","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

提出了一种基于有界实数平衡的二维离散系统降阶方法。为了降低一维连续时间系统的阶数,首先引入了BR平衡的概念。结果表明,如果所考虑的二维离散系统满足二维李雅普诺夫条件,则BR平衡近似产生稳定的低阶二维系统,且近似误差相当小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Order reduction of 2-D discrete systems via bounded real balancing
A novel order-reduction method for 2-D discrete systems based on bounded real (BR) balancing is presented. The concept of BR balancing was first introduced to reduce the order of 1-D continuous-time systems. It is shown that if the 2-D discrete system considered satisfies the 2-D Lyapunov condition, the BR balanced approximation then yields a stable low-order 2-D system with a reasonably small approximation error.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信