{"title":"用于单幅图像训练的递归rlcn引导注意网络","authors":"Yizhou Li, Yusuke Monno, M. Okutomi","doi":"10.23919/MVA51890.2021.9511405","DOIUrl":null,"url":null,"abstract":"Single image deraining is an important yet challenging task due to the ill-posed nature of the problem to derive the rain-free clean image from a rainy image. In this paper, we propose Recurrent RLCN-Guided Attention Network (RRANet) for single image deraining. Our main technical contributions lie in threefold: (i) We propose rectified local contrast normalization (RLCN) to apply to the input rainy image to effectively mark candidates of rain regions. (ii) We propose RLCN-guided attention module (RLCN-GAM) to learn an effective attention map for the deraining without the necessity of ground-truth rain masks. (iii) We incorporate RLCN-GAM into a recurrent neural network to progressively derive the rainy-to-clean image mapping. The quantitative and qualitative evaluations using representative deraining benchmark datasets demonstrate that our proposed RRANet outperforms existing state-of-the-art deraining methods, where it is particularly noteworthy that our method clearly achieves the best performance on a realworld dataset.","PeriodicalId":312481,"journal":{"name":"2021 17th International Conference on Machine Vision and Applications (MVA)","volume":"91 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Recurrent RLCN-Guided Attention Network for Single Image Deraining\",\"authors\":\"Yizhou Li, Yusuke Monno, M. Okutomi\",\"doi\":\"10.23919/MVA51890.2021.9511405\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Single image deraining is an important yet challenging task due to the ill-posed nature of the problem to derive the rain-free clean image from a rainy image. In this paper, we propose Recurrent RLCN-Guided Attention Network (RRANet) for single image deraining. Our main technical contributions lie in threefold: (i) We propose rectified local contrast normalization (RLCN) to apply to the input rainy image to effectively mark candidates of rain regions. (ii) We propose RLCN-guided attention module (RLCN-GAM) to learn an effective attention map for the deraining without the necessity of ground-truth rain masks. (iii) We incorporate RLCN-GAM into a recurrent neural network to progressively derive the rainy-to-clean image mapping. The quantitative and qualitative evaluations using representative deraining benchmark datasets demonstrate that our proposed RRANet outperforms existing state-of-the-art deraining methods, where it is particularly noteworthy that our method clearly achieves the best performance on a realworld dataset.\",\"PeriodicalId\":312481,\"journal\":{\"name\":\"2021 17th International Conference on Machine Vision and Applications (MVA)\",\"volume\":\"91 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 17th International Conference on Machine Vision and Applications (MVA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/MVA51890.2021.9511405\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 17th International Conference on Machine Vision and Applications (MVA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/MVA51890.2021.9511405","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Recurrent RLCN-Guided Attention Network for Single Image Deraining
Single image deraining is an important yet challenging task due to the ill-posed nature of the problem to derive the rain-free clean image from a rainy image. In this paper, we propose Recurrent RLCN-Guided Attention Network (RRANet) for single image deraining. Our main technical contributions lie in threefold: (i) We propose rectified local contrast normalization (RLCN) to apply to the input rainy image to effectively mark candidates of rain regions. (ii) We propose RLCN-guided attention module (RLCN-GAM) to learn an effective attention map for the deraining without the necessity of ground-truth rain masks. (iii) We incorporate RLCN-GAM into a recurrent neural network to progressively derive the rainy-to-clean image mapping. The quantitative and qualitative evaluations using representative deraining benchmark datasets demonstrate that our proposed RRANet outperforms existing state-of-the-art deraining methods, where it is particularly noteworthy that our method clearly achieves the best performance on a realworld dataset.