基于瑞利分布的SAR图像边缘检测

S. Paul, B. Saiteja, S. Rajasekharan, K. Pravallika, K. P. Reddy
{"title":"基于瑞利分布的SAR图像边缘检测","authors":"S. Paul, B. Saiteja, S. Rajasekharan, K. Pravallika, K. P. Reddy","doi":"10.1109/ICETET-SIP-2254415.2022.9791820","DOIUrl":null,"url":null,"abstract":"Edge detection in Synthetic Aperture Radar (SAR) images is challenging task in remote sensing as the images contain significant speckle noise. Many ratio-based edge detectors have been developed in recent years to effectively identify the edges in SAR images. However, an automatic threshold value selection in edge detection is a critical issue. In this paper, a Rayleigh distribution-based edge detection method is proposed for the automatic selection of threshold value. This method is very effective to automatically identify the true edges and reject the false edges. Experiments are performed on different SAR images to verify the effectiveness of the developed method.","PeriodicalId":117229,"journal":{"name":"2022 10th International Conference on Emerging Trends in Engineering and Technology - Signal and Information Processing (ICETET-SIP-22)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rayleigh Distribution-based Edge Detection in SAR Images\",\"authors\":\"S. Paul, B. Saiteja, S. Rajasekharan, K. Pravallika, K. P. Reddy\",\"doi\":\"10.1109/ICETET-SIP-2254415.2022.9791820\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Edge detection in Synthetic Aperture Radar (SAR) images is challenging task in remote sensing as the images contain significant speckle noise. Many ratio-based edge detectors have been developed in recent years to effectively identify the edges in SAR images. However, an automatic threshold value selection in edge detection is a critical issue. In this paper, a Rayleigh distribution-based edge detection method is proposed for the automatic selection of threshold value. This method is very effective to automatically identify the true edges and reject the false edges. Experiments are performed on different SAR images to verify the effectiveness of the developed method.\",\"PeriodicalId\":117229,\"journal\":{\"name\":\"2022 10th International Conference on Emerging Trends in Engineering and Technology - Signal and Information Processing (ICETET-SIP-22)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-04-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 10th International Conference on Emerging Trends in Engineering and Technology - Signal and Information Processing (ICETET-SIP-22)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICETET-SIP-2254415.2022.9791820\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 10th International Conference on Emerging Trends in Engineering and Technology - Signal and Information Processing (ICETET-SIP-22)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICETET-SIP-2254415.2022.9791820","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

合成孔径雷达(SAR)图像的边缘检测是一项具有挑战性的任务,因为SAR图像中含有大量的散斑噪声。为了有效地识别SAR图像中的边缘,近年来发展了许多基于比率的边缘检测器。然而,在边缘检测中,阈值的自动选择是一个关键问题。本文提出了一种基于瑞利分布的边缘检测方法,用于阈值的自动选择。该方法能够有效地自动识别图像的真边缘,并剔除假边缘。在不同的SAR图像上进行了实验,验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Rayleigh Distribution-based Edge Detection in SAR Images
Edge detection in Synthetic Aperture Radar (SAR) images is challenging task in remote sensing as the images contain significant speckle noise. Many ratio-based edge detectors have been developed in recent years to effectively identify the edges in SAR images. However, an automatic threshold value selection in edge detection is a critical issue. In this paper, a Rayleigh distribution-based edge detection method is proposed for the automatic selection of threshold value. This method is very effective to automatically identify the true edges and reject the false edges. Experiments are performed on different SAR images to verify the effectiveness of the developed method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信