异构激活函数提取用于SNN系统的训练和优化

A. Zjajo, Sumeet S. Kumar, R. V. Leuken
{"title":"异构激活函数提取用于SNN系统的训练和优化","authors":"A. Zjajo, Sumeet S. Kumar, R. V. Leuken","doi":"10.1109/AICAS.2019.8771619","DOIUrl":null,"url":null,"abstract":"Energy-efficiency and computation capability characteristics of analog/mixed-signal spiking neural networks offer capable platform for implementation of cognitive tasks on resource-limited embedded platforms. However, inherent mismatch in analog devices severely influence accuracy and reliability of the computing system. In this paper, we devise efficient algorithm for extracting of heterogeneous activation functions of analog hardware neurons as a set of constraints in an off-line training and optimization process, and examine how compensation of the mismatch effects influence synchronicity and information processing capabilities of the system.","PeriodicalId":273095,"journal":{"name":"2019 IEEE International Conference on Artificial Intelligence Circuits and Systems (AICAS)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Heterogeneous Activation Function Extraction for Training and Optimization of SNN Systems\",\"authors\":\"A. Zjajo, Sumeet S. Kumar, R. V. Leuken\",\"doi\":\"10.1109/AICAS.2019.8771619\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Energy-efficiency and computation capability characteristics of analog/mixed-signal spiking neural networks offer capable platform for implementation of cognitive tasks on resource-limited embedded platforms. However, inherent mismatch in analog devices severely influence accuracy and reliability of the computing system. In this paper, we devise efficient algorithm for extracting of heterogeneous activation functions of analog hardware neurons as a set of constraints in an off-line training and optimization process, and examine how compensation of the mismatch effects influence synchronicity and information processing capabilities of the system.\",\"PeriodicalId\":273095,\"journal\":{\"name\":\"2019 IEEE International Conference on Artificial Intelligence Circuits and Systems (AICAS)\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE International Conference on Artificial Intelligence Circuits and Systems (AICAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AICAS.2019.8771619\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Conference on Artificial Intelligence Circuits and Systems (AICAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AICAS.2019.8771619","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

模拟/混合信号尖峰神经网络的能量效率和计算能力特点为在资源有限的嵌入式平台上实现认知任务提供了良好的平台。然而,模拟器件固有的失配严重影响了计算系统的精度和可靠性。在本文中,我们设计了一种有效的算法来提取模拟硬件神经元的异构激活函数,作为离线训练和优化过程中的一组约束,并研究了补偿错配效应如何影响系统的同步性和信息处理能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Heterogeneous Activation Function Extraction for Training and Optimization of SNN Systems
Energy-efficiency and computation capability characteristics of analog/mixed-signal spiking neural networks offer capable platform for implementation of cognitive tasks on resource-limited embedded platforms. However, inherent mismatch in analog devices severely influence accuracy and reliability of the computing system. In this paper, we devise efficient algorithm for extracting of heterogeneous activation functions of analog hardware neurons as a set of constraints in an off-line training and optimization process, and examine how compensation of the mismatch effects influence synchronicity and information processing capabilities of the system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信