{"title":"异构激活函数提取用于SNN系统的训练和优化","authors":"A. Zjajo, Sumeet S. Kumar, R. V. Leuken","doi":"10.1109/AICAS.2019.8771619","DOIUrl":null,"url":null,"abstract":"Energy-efficiency and computation capability characteristics of analog/mixed-signal spiking neural networks offer capable platform for implementation of cognitive tasks on resource-limited embedded platforms. However, inherent mismatch in analog devices severely influence accuracy and reliability of the computing system. In this paper, we devise efficient algorithm for extracting of heterogeneous activation functions of analog hardware neurons as a set of constraints in an off-line training and optimization process, and examine how compensation of the mismatch effects influence synchronicity and information processing capabilities of the system.","PeriodicalId":273095,"journal":{"name":"2019 IEEE International Conference on Artificial Intelligence Circuits and Systems (AICAS)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Heterogeneous Activation Function Extraction for Training and Optimization of SNN Systems\",\"authors\":\"A. Zjajo, Sumeet S. Kumar, R. V. Leuken\",\"doi\":\"10.1109/AICAS.2019.8771619\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Energy-efficiency and computation capability characteristics of analog/mixed-signal spiking neural networks offer capable platform for implementation of cognitive tasks on resource-limited embedded platforms. However, inherent mismatch in analog devices severely influence accuracy and reliability of the computing system. In this paper, we devise efficient algorithm for extracting of heterogeneous activation functions of analog hardware neurons as a set of constraints in an off-line training and optimization process, and examine how compensation of the mismatch effects influence synchronicity and information processing capabilities of the system.\",\"PeriodicalId\":273095,\"journal\":{\"name\":\"2019 IEEE International Conference on Artificial Intelligence Circuits and Systems (AICAS)\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE International Conference on Artificial Intelligence Circuits and Systems (AICAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AICAS.2019.8771619\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Conference on Artificial Intelligence Circuits and Systems (AICAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AICAS.2019.8771619","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Heterogeneous Activation Function Extraction for Training and Optimization of SNN Systems
Energy-efficiency and computation capability characteristics of analog/mixed-signal spiking neural networks offer capable platform for implementation of cognitive tasks on resource-limited embedded platforms. However, inherent mismatch in analog devices severely influence accuracy and reliability of the computing system. In this paper, we devise efficient algorithm for extracting of heterogeneous activation functions of analog hardware neurons as a set of constraints in an off-line training and optimization process, and examine how compensation of the mismatch effects influence synchronicity and information processing capabilities of the system.