离散时间市场中交易成本下的最优投资组合

Mehmet A. Donmez, Sait Tunç, S. Kozat
{"title":"离散时间市场中交易成本下的最优投资组合","authors":"Mehmet A. Donmez, Sait Tunç, S. Kozat","doi":"10.1109/MLSP.2012.6349773","DOIUrl":null,"url":null,"abstract":"We study portfolio investment problem from a probabilistic modeling perspective and study how an investor should distribute wealth over two assets in order to maximize the cumulative wealth. We construct portfolios that provide the optimal growth in i.i.d. discrete time two-asset markets under proportional transaction costs. As the market model, we consider arbitrary discrete distributions on the price relative vectors. To achieve optimal growth, we use threshold portfolios. We demonstrate that under the threshold rebalancing framework, the achievable set of portfolios elegantly form an irreducible Markov chain under mild technical conditions. We evaluate the corresponding stationary distribution of this Markov chain, which provides a natural and efficient method to calculate the cumulative expected wealth. Subsequently, the corresponding parameters are optimized using a brute force approach yielding the growth optimal portfolio under proportional transaction costs in i.i.d. discrete-time two-asset markets.","PeriodicalId":262601,"journal":{"name":"2012 IEEE International Workshop on Machine Learning for Signal Processing","volume":"186 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimal portfolios under transaction costs in discrete time markets\",\"authors\":\"Mehmet A. Donmez, Sait Tunç, S. Kozat\",\"doi\":\"10.1109/MLSP.2012.6349773\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study portfolio investment problem from a probabilistic modeling perspective and study how an investor should distribute wealth over two assets in order to maximize the cumulative wealth. We construct portfolios that provide the optimal growth in i.i.d. discrete time two-asset markets under proportional transaction costs. As the market model, we consider arbitrary discrete distributions on the price relative vectors. To achieve optimal growth, we use threshold portfolios. We demonstrate that under the threshold rebalancing framework, the achievable set of portfolios elegantly form an irreducible Markov chain under mild technical conditions. We evaluate the corresponding stationary distribution of this Markov chain, which provides a natural and efficient method to calculate the cumulative expected wealth. Subsequently, the corresponding parameters are optimized using a brute force approach yielding the growth optimal portfolio under proportional transaction costs in i.i.d. discrete-time two-asset markets.\",\"PeriodicalId\":262601,\"journal\":{\"name\":\"2012 IEEE International Workshop on Machine Learning for Signal Processing\",\"volume\":\"186 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE International Workshop on Machine Learning for Signal Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MLSP.2012.6349773\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE International Workshop on Machine Learning for Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MLSP.2012.6349773","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文从概率建模的角度研究了证券投资问题,研究了投资者如何在两种资产上分配财富以使累积财富最大化。我们构建了在交易成本成比例的离散时间双资产市场中提供最优增长的投资组合。作为市场模型,我们考虑价格相对向量上的任意离散分布。为了实现最佳增长,我们使用阈值投资组合。我们证明了在阈值再平衡框架下,在温和的技术条件下,可实现的投资组合集优雅地形成了不可约的马尔可夫链。我们评估了该马尔可夫链对应的平稳分布,为计算累积期望财富提供了一种自然而有效的方法。随后,使用蛮力方法对相应的参数进行了优化,得到了离散时间双资产市场中按比例交易成本下的增长最优投资组合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimal portfolios under transaction costs in discrete time markets
We study portfolio investment problem from a probabilistic modeling perspective and study how an investor should distribute wealth over two assets in order to maximize the cumulative wealth. We construct portfolios that provide the optimal growth in i.i.d. discrete time two-asset markets under proportional transaction costs. As the market model, we consider arbitrary discrete distributions on the price relative vectors. To achieve optimal growth, we use threshold portfolios. We demonstrate that under the threshold rebalancing framework, the achievable set of portfolios elegantly form an irreducible Markov chain under mild technical conditions. We evaluate the corresponding stationary distribution of this Markov chain, which provides a natural and efficient method to calculate the cumulative expected wealth. Subsequently, the corresponding parameters are optimized using a brute force approach yielding the growth optimal portfolio under proportional transaction costs in i.i.d. discrete-time two-asset markets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信