基于全卷积网络的亚马逊雨林毁林制图光学与SAR数据比较

M. O. Adarme, R. Feitosa, J. Bermudez, P. Happ, C. Almeida
{"title":"基于全卷积网络的亚马逊雨林毁林制图光学与SAR数据比较","authors":"M. O. Adarme, R. Feitosa, J. Bermudez, P. Happ, C. Almeida","doi":"10.1109/IGARSS47720.2021.9554970","DOIUrl":null,"url":null,"abstract":"Early detection of deforestation processes is vital to maintain and regulate tropical rainforests, such as in the Amazon region. Most of them rely on optical imagery. Approaches based on Synthetic Aperture Radar (SAR) data are comparatively unexplored, in particular for deforestation detection in tropical rainforests. This work addresses this gap and evaluates Fully Convolutional Networks based on the U-Net, Res-Unet and Siamese Network, for deforestation detection using images from three different sensors, Landsat-8, Sentinel-2, and Sentinel-1. Experiments conducted on a dataset of the Amazon rainforest indicated that Fully Convolutional Networks working on Sentinel-1 data can achieve sufficient accuracy for detecting deforestation in tropical rainforests when clouds prevent the use of optical data11The source code is available in https://github.zcom/MabelOrtega/Comparison-of-Optical-and-SAR-data-for-deforestation-mapping-in-the-Amazon-Forest-with-FCN.","PeriodicalId":315312,"journal":{"name":"2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS","volume":"79 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Comparison of Optical and SAR Data for Deforestation Mapping in the Amazon Rainforest with Fully Convolutional Networks\",\"authors\":\"M. O. Adarme, R. Feitosa, J. Bermudez, P. Happ, C. Almeida\",\"doi\":\"10.1109/IGARSS47720.2021.9554970\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Early detection of deforestation processes is vital to maintain and regulate tropical rainforests, such as in the Amazon region. Most of them rely on optical imagery. Approaches based on Synthetic Aperture Radar (SAR) data are comparatively unexplored, in particular for deforestation detection in tropical rainforests. This work addresses this gap and evaluates Fully Convolutional Networks based on the U-Net, Res-Unet and Siamese Network, for deforestation detection using images from three different sensors, Landsat-8, Sentinel-2, and Sentinel-1. Experiments conducted on a dataset of the Amazon rainforest indicated that Fully Convolutional Networks working on Sentinel-1 data can achieve sufficient accuracy for detecting deforestation in tropical rainforests when clouds prevent the use of optical data11The source code is available in https://github.zcom/MabelOrtega/Comparison-of-Optical-and-SAR-data-for-deforestation-mapping-in-the-Amazon-Forest-with-FCN.\",\"PeriodicalId\":315312,\"journal\":{\"name\":\"2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS\",\"volume\":\"79 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IGARSS47720.2021.9554970\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IGARSS47720.2021.9554970","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

早期发现森林砍伐过程对于维持和管理热带雨林至关重要,例如在亚马逊地区。它们大多依靠光学成像。基于合成孔径雷达(SAR)数据的方法研究相对较少,特别是在热带雨林的森林砍伐检测方面。这项工作解决了这一差距,并评估了基于U-Net、Res-Unet和Siamese网络的全卷积网络,用于使用来自三种不同传感器(Landsat-8、Sentinel-2和Sentinel-1)的图像进行森林砍伐检测。在亚马逊雨林数据集上进行的实验表明,当云层阻止光学数据的使用时,在Sentinel-1数据上工作的全卷积网络可以达到足够的精度来检测热带雨林中的森林砍伐情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Comparison of Optical and SAR Data for Deforestation Mapping in the Amazon Rainforest with Fully Convolutional Networks
Early detection of deforestation processes is vital to maintain and regulate tropical rainforests, such as in the Amazon region. Most of them rely on optical imagery. Approaches based on Synthetic Aperture Radar (SAR) data are comparatively unexplored, in particular for deforestation detection in tropical rainforests. This work addresses this gap and evaluates Fully Convolutional Networks based on the U-Net, Res-Unet and Siamese Network, for deforestation detection using images from three different sensors, Landsat-8, Sentinel-2, and Sentinel-1. Experiments conducted on a dataset of the Amazon rainforest indicated that Fully Convolutional Networks working on Sentinel-1 data can achieve sufficient accuracy for detecting deforestation in tropical rainforests when clouds prevent the use of optical data11The source code is available in https://github.zcom/MabelOrtega/Comparison-of-Optical-and-SAR-data-for-deforestation-mapping-in-the-Amazon-Forest-with-FCN.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.20
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信