{"title":"蜂窝大规模天线系统多址移动网络的总能量效率","authors":"Hong Yang, T. Marzetta","doi":"10.1109/OnlineGreenCom.2013.6731024","DOIUrl":null,"url":null,"abstract":"Energy efficiency and spectral efficiency of a Large Scale Antenna System in both dense urban and suburban multi-macro-cellular scenarios are quantified using a new total energy efficiency model, which consists of a rigorous capacity lower bound and a power model accounting for RF generation, LSAS critical computing and a per antenna internal power consumption for other analog electronics and A/D and D/A converters that are associated with each LSAS service antenna. Based on our model, in dense urban, an LSAS with sixty-four OdB gain service antennas per cell, each service antenna consuming an internal power of 128 mW above the power required for RF generation and for LSAS critical computing, can simultaneously serve 15 users with a total energy efficiency almost 1000 times greater than that of a typical LTE base station and at the same time more than quadruple the aggregate spectral efficiency.","PeriodicalId":152857,"journal":{"name":"2013 IEEE Online Conference on Green Communications (OnlineGreenComm)","volume":"203 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"182","resultStr":"{\"title\":\"Total energy efficiency of cellular large scale antenna system multiple access mobile networks\",\"authors\":\"Hong Yang, T. Marzetta\",\"doi\":\"10.1109/OnlineGreenCom.2013.6731024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Energy efficiency and spectral efficiency of a Large Scale Antenna System in both dense urban and suburban multi-macro-cellular scenarios are quantified using a new total energy efficiency model, which consists of a rigorous capacity lower bound and a power model accounting for RF generation, LSAS critical computing and a per antenna internal power consumption for other analog electronics and A/D and D/A converters that are associated with each LSAS service antenna. Based on our model, in dense urban, an LSAS with sixty-four OdB gain service antennas per cell, each service antenna consuming an internal power of 128 mW above the power required for RF generation and for LSAS critical computing, can simultaneously serve 15 users with a total energy efficiency almost 1000 times greater than that of a typical LTE base station and at the same time more than quadruple the aggregate spectral efficiency.\",\"PeriodicalId\":152857,\"journal\":{\"name\":\"2013 IEEE Online Conference on Green Communications (OnlineGreenComm)\",\"volume\":\"203 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"182\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE Online Conference on Green Communications (OnlineGreenComm)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/OnlineGreenCom.2013.6731024\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE Online Conference on Green Communications (OnlineGreenComm)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/OnlineGreenCom.2013.6731024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Total energy efficiency of cellular large scale antenna system multiple access mobile networks
Energy efficiency and spectral efficiency of a Large Scale Antenna System in both dense urban and suburban multi-macro-cellular scenarios are quantified using a new total energy efficiency model, which consists of a rigorous capacity lower bound and a power model accounting for RF generation, LSAS critical computing and a per antenna internal power consumption for other analog electronics and A/D and D/A converters that are associated with each LSAS service antenna. Based on our model, in dense urban, an LSAS with sixty-four OdB gain service antennas per cell, each service antenna consuming an internal power of 128 mW above the power required for RF generation and for LSAS critical computing, can simultaneously serve 15 users with a total energy efficiency almost 1000 times greater than that of a typical LTE base station and at the same time more than quadruple the aggregate spectral efficiency.