基于多模态变分更快R-CNN的制造业视觉目标检测

Panagiotis Mouzenidis, Antonios Louros, D. Konstantinidis, K. Dimitropoulos, P. Daras, Theofilos D. Mastos
{"title":"基于多模态变分更快R-CNN的制造业视觉目标检测","authors":"Panagiotis Mouzenidis, Antonios Louros, D. Konstantinidis, K. Dimitropoulos, P. Daras, Theofilos D. Mastos","doi":"10.1109/ICCVW54120.2021.00292","DOIUrl":null,"url":null,"abstract":"Visual object detection is a critical task for a variety of industrial applications, such as robot navigation, quality control and product assembling. Modern industrial environments require AI-based object detection methods that can achieve high accuracy, robustness and generalization. To this end, we propose a novel object detection approach that can process and fuse information from RGB-D images for the accurate detection of industrial objects. The proposed approach utilizes a novel Variational Faster R-CNN algorithm that aims to improve the robustness and generalization ability of the original Faster R-CNN algorithm by employing a VAE encoder-decoder network and a very powerful attention layer. Experimental results on two object detection datasets, namely the well-known RGB-D Washington dataset and the QCONPASS dataset of industrial objects that is first presented in this paper, verify the significant performance improvement achieved when the proposed approach is employed.","PeriodicalId":226794,"journal":{"name":"2021 IEEE/CVF International Conference on Computer Vision Workshops (ICCVW)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Multi-modal Variational Faster R-CNN for Improved Visual Object Detection in Manufacturing\",\"authors\":\"Panagiotis Mouzenidis, Antonios Louros, D. Konstantinidis, K. Dimitropoulos, P. Daras, Theofilos D. Mastos\",\"doi\":\"10.1109/ICCVW54120.2021.00292\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Visual object detection is a critical task for a variety of industrial applications, such as robot navigation, quality control and product assembling. Modern industrial environments require AI-based object detection methods that can achieve high accuracy, robustness and generalization. To this end, we propose a novel object detection approach that can process and fuse information from RGB-D images for the accurate detection of industrial objects. The proposed approach utilizes a novel Variational Faster R-CNN algorithm that aims to improve the robustness and generalization ability of the original Faster R-CNN algorithm by employing a VAE encoder-decoder network and a very powerful attention layer. Experimental results on two object detection datasets, namely the well-known RGB-D Washington dataset and the QCONPASS dataset of industrial objects that is first presented in this paper, verify the significant performance improvement achieved when the proposed approach is employed.\",\"PeriodicalId\":226794,\"journal\":{\"name\":\"2021 IEEE/CVF International Conference on Computer Vision Workshops (ICCVW)\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE/CVF International Conference on Computer Vision Workshops (ICCVW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCVW54120.2021.00292\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE/CVF International Conference on Computer Vision Workshops (ICCVW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCVW54120.2021.00292","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

视觉目标检测是各种工业应用的关键任务,如机器人导航,质量控制和产品组装。现代工业环境要求基于人工智能的物体检测方法能够实现高精度、鲁棒性和泛化。为此,我们提出了一种新的物体检测方法,可以处理和融合来自RGB-D图像的信息,以准确检测工业物体。该方法采用了一种新颖的变分Faster R-CNN算法,通过使用VAE编码器-解码器网络和非常强大的注意层,旨在提高原始Faster R-CNN算法的鲁棒性和泛化能力。在两个目标检测数据集(即著名的RGB-D Washington数据集和本文首次提出的工业目标QCONPASS数据集)上的实验结果验证了采用本文提出的方法所取得的显著性能提升。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multi-modal Variational Faster R-CNN for Improved Visual Object Detection in Manufacturing
Visual object detection is a critical task for a variety of industrial applications, such as robot navigation, quality control and product assembling. Modern industrial environments require AI-based object detection methods that can achieve high accuracy, robustness and generalization. To this end, we propose a novel object detection approach that can process and fuse information from RGB-D images for the accurate detection of industrial objects. The proposed approach utilizes a novel Variational Faster R-CNN algorithm that aims to improve the robustness and generalization ability of the original Faster R-CNN algorithm by employing a VAE encoder-decoder network and a very powerful attention layer. Experimental results on two object detection datasets, namely the well-known RGB-D Washington dataset and the QCONPASS dataset of industrial objects that is first presented in this paper, verify the significant performance improvement achieved when the proposed approach is employed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信