Panagiotis Mouzenidis, Antonios Louros, D. Konstantinidis, K. Dimitropoulos, P. Daras, Theofilos D. Mastos
{"title":"基于多模态变分更快R-CNN的制造业视觉目标检测","authors":"Panagiotis Mouzenidis, Antonios Louros, D. Konstantinidis, K. Dimitropoulos, P. Daras, Theofilos D. Mastos","doi":"10.1109/ICCVW54120.2021.00292","DOIUrl":null,"url":null,"abstract":"Visual object detection is a critical task for a variety of industrial applications, such as robot navigation, quality control and product assembling. Modern industrial environments require AI-based object detection methods that can achieve high accuracy, robustness and generalization. To this end, we propose a novel object detection approach that can process and fuse information from RGB-D images for the accurate detection of industrial objects. The proposed approach utilizes a novel Variational Faster R-CNN algorithm that aims to improve the robustness and generalization ability of the original Faster R-CNN algorithm by employing a VAE encoder-decoder network and a very powerful attention layer. Experimental results on two object detection datasets, namely the well-known RGB-D Washington dataset and the QCONPASS dataset of industrial objects that is first presented in this paper, verify the significant performance improvement achieved when the proposed approach is employed.","PeriodicalId":226794,"journal":{"name":"2021 IEEE/CVF International Conference on Computer Vision Workshops (ICCVW)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Multi-modal Variational Faster R-CNN for Improved Visual Object Detection in Manufacturing\",\"authors\":\"Panagiotis Mouzenidis, Antonios Louros, D. Konstantinidis, K. Dimitropoulos, P. Daras, Theofilos D. Mastos\",\"doi\":\"10.1109/ICCVW54120.2021.00292\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Visual object detection is a critical task for a variety of industrial applications, such as robot navigation, quality control and product assembling. Modern industrial environments require AI-based object detection methods that can achieve high accuracy, robustness and generalization. To this end, we propose a novel object detection approach that can process and fuse information from RGB-D images for the accurate detection of industrial objects. The proposed approach utilizes a novel Variational Faster R-CNN algorithm that aims to improve the robustness and generalization ability of the original Faster R-CNN algorithm by employing a VAE encoder-decoder network and a very powerful attention layer. Experimental results on two object detection datasets, namely the well-known RGB-D Washington dataset and the QCONPASS dataset of industrial objects that is first presented in this paper, verify the significant performance improvement achieved when the proposed approach is employed.\",\"PeriodicalId\":226794,\"journal\":{\"name\":\"2021 IEEE/CVF International Conference on Computer Vision Workshops (ICCVW)\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE/CVF International Conference on Computer Vision Workshops (ICCVW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCVW54120.2021.00292\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE/CVF International Conference on Computer Vision Workshops (ICCVW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCVW54120.2021.00292","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Multi-modal Variational Faster R-CNN for Improved Visual Object Detection in Manufacturing
Visual object detection is a critical task for a variety of industrial applications, such as robot navigation, quality control and product assembling. Modern industrial environments require AI-based object detection methods that can achieve high accuracy, robustness and generalization. To this end, we propose a novel object detection approach that can process and fuse information from RGB-D images for the accurate detection of industrial objects. The proposed approach utilizes a novel Variational Faster R-CNN algorithm that aims to improve the robustness and generalization ability of the original Faster R-CNN algorithm by employing a VAE encoder-decoder network and a very powerful attention layer. Experimental results on two object detection datasets, namely the well-known RGB-D Washington dataset and the QCONPASS dataset of industrial objects that is first presented in this paper, verify the significant performance improvement achieved when the proposed approach is employed.