{"title":"高温超导体低温电流比较器","authors":"R. Elmquist, R. Dziuba","doi":"10.1109/CPEM.1994.333415","DOIUrl":null,"url":null,"abstract":"NIST is developing a cryogenic current comparator (CCC) to operate at 77 K, using high-temperature superconductor (HTS) ceramic shields and a HTS-based superconducting quantum interference device (SQUID) detector. HTS shielding at low magnetic field levels is probably sufficient for high accuracy measurements. Unshielded sections of the ratio windings may produce a significant error.<<ETX>>","PeriodicalId":388647,"journal":{"name":"Proceedings of Conference on Precision Electromagnetic Measurements Digest","volume":"60 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"A high-temperature superconductor cryogenic current comparator\",\"authors\":\"R. Elmquist, R. Dziuba\",\"doi\":\"10.1109/CPEM.1994.333415\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"NIST is developing a cryogenic current comparator (CCC) to operate at 77 K, using high-temperature superconductor (HTS) ceramic shields and a HTS-based superconducting quantum interference device (SQUID) detector. HTS shielding at low magnetic field levels is probably sufficient for high accuracy measurements. Unshielded sections of the ratio windings may produce a significant error.<<ETX>>\",\"PeriodicalId\":388647,\"journal\":{\"name\":\"Proceedings of Conference on Precision Electromagnetic Measurements Digest\",\"volume\":\"60 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1994-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of Conference on Precision Electromagnetic Measurements Digest\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CPEM.1994.333415\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of Conference on Precision Electromagnetic Measurements Digest","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CPEM.1994.333415","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A high-temperature superconductor cryogenic current comparator
NIST is developing a cryogenic current comparator (CCC) to operate at 77 K, using high-temperature superconductor (HTS) ceramic shields and a HTS-based superconducting quantum interference device (SQUID) detector. HTS shielding at low magnetic field levels is probably sufficient for high accuracy measurements. Unshielded sections of the ratio windings may produce a significant error.<>