{"title":"正则图的线形图的补的互补距离能","authors":"H. Ramane, B. Parvathalu","doi":"10.36753/MATHENOT.641660","DOIUrl":null,"url":null,"abstract":"The reciprocal complementary distance ($RCD$) matrix of a graph $G$ is defined as $RCD(G) = [r_{ij}]$, where $r_{ij} = \\frac{1}{1+D-d_{ij}}$ if $i \\neq j$ and $r_{ij} = 0$, otherwise, where $D$ is the diameter of $G$ and $d_{ij}$ is the distance between the vertices $v_i$ and $v_j$ in $G$. The $RCD$-energy of $G$ is defined as the sum of the absolute values of the eigenvalues of $RCD$-matrix. Two graphs are said to be $RCD$-equienergetic if they have same $RCD$-energy. In this paper, the $RCD$-energy of the complement of line graphs of certain regular graphs in terms of the order and degree is obtained and as a consequence, pairs of $RCD$-equienergetic graphs of same order and having different $RCD$-eigenvalues are constructed.","PeriodicalId":127589,"journal":{"name":"Mathematical Sciences and Applications E-Notes","volume":"124 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reciprocal Complementary Distance Energy of Complement of Line Graphs of Regular Graphs\",\"authors\":\"H. Ramane, B. Parvathalu\",\"doi\":\"10.36753/MATHENOT.641660\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The reciprocal complementary distance ($RCD$) matrix of a graph $G$ is defined as $RCD(G) = [r_{ij}]$, where $r_{ij} = \\\\frac{1}{1+D-d_{ij}}$ if $i \\\\neq j$ and $r_{ij} = 0$, otherwise, where $D$ is the diameter of $G$ and $d_{ij}$ is the distance between the vertices $v_i$ and $v_j$ in $G$. The $RCD$-energy of $G$ is defined as the sum of the absolute values of the eigenvalues of $RCD$-matrix. Two graphs are said to be $RCD$-equienergetic if they have same $RCD$-energy. In this paper, the $RCD$-energy of the complement of line graphs of certain regular graphs in terms of the order and degree is obtained and as a consequence, pairs of $RCD$-equienergetic graphs of same order and having different $RCD$-eigenvalues are constructed.\",\"PeriodicalId\":127589,\"journal\":{\"name\":\"Mathematical Sciences and Applications E-Notes\",\"volume\":\"124 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Sciences and Applications E-Notes\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.36753/MATHENOT.641660\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Sciences and Applications E-Notes","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36753/MATHENOT.641660","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Reciprocal Complementary Distance Energy of Complement of Line Graphs of Regular Graphs
The reciprocal complementary distance ($RCD$) matrix of a graph $G$ is defined as $RCD(G) = [r_{ij}]$, where $r_{ij} = \frac{1}{1+D-d_{ij}}$ if $i \neq j$ and $r_{ij} = 0$, otherwise, where $D$ is the diameter of $G$ and $d_{ij}$ is the distance between the vertices $v_i$ and $v_j$ in $G$. The $RCD$-energy of $G$ is defined as the sum of the absolute values of the eigenvalues of $RCD$-matrix. Two graphs are said to be $RCD$-equienergetic if they have same $RCD$-energy. In this paper, the $RCD$-energy of the complement of line graphs of certain regular graphs in terms of the order and degree is obtained and as a consequence, pairs of $RCD$-equienergetic graphs of same order and having different $RCD$-eigenvalues are constructed.