Zhen Sun, Y. Ge, Y. Lv, Meng Huang, Chengrong Li, Yue-fan Du
{"title":"TiO2纳米粒子对老化变压器油绝缘和电荷输运特性的影响","authors":"Zhen Sun, Y. Ge, Y. Lv, Meng Huang, Chengrong Li, Yue-fan Du","doi":"10.1109/ICDL.2019.8796677","DOIUrl":null,"url":null,"abstract":"The insulation property of transformer oil is prone to decreasing due to insulation aging caused by the heat, electricity and other factors under the long-term operation, which is vital to the safe operation of power equipment. It has been reported that nanoparticles can improve the insulation properties of transformer oil. However, there has been no evidence showing the effect of nanoparticles on insulation properties of aging transformer oil, and the modified mechanism of nanoparticles is not clear. To reveal the modified mechanism of nanoparticles on aging transformer oil, this paper presents the effects of TiO2 nanoparticles on the insulating properties, space charge characteristics and trap characteristics of aged transformer oil. The results show that the insulation properties of transformer oil with different aging degree are improved by adding TiO2 nanoparticles. The AC breakdown voltage of aged nanofluid is increased significantly to the one of non-aging transformer oil. The lightning impulse breakdown voltage is increased by 30%∼40%. Besides, the partial discharge inception voltage is increased by 12%. Moreover, the space charge characteristics measuring by the pulse electro-acoustic technique show that the charge dissipation rate of the aged transformer oil is increased by 57% with the presence of TiO2 nanoparticles, which reduces the accumulation of space charges. The thermally stimulation current shows that more traps with shallower energy level are induced by TiO2 nanoparticles. The charge trapping and de-trapping process in shallow traps are beneficial to the rapid dissipation of charges and restrains the accumulation of space charges. Therefore, TiO2 nanoparticles can effectively modify the charge accumulation and dissipation characteristics in aging transformer oil and significantly reduce the distortion of electric field, resulting in the improvement of the insulation property.","PeriodicalId":102217,"journal":{"name":"2019 IEEE 20th International Conference on Dielectric Liquids (ICDL)","volume":"262 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"The effects of TiO2 nanoparticles on insulation and charge transport characteristics of aged transformer oil\",\"authors\":\"Zhen Sun, Y. Ge, Y. Lv, Meng Huang, Chengrong Li, Yue-fan Du\",\"doi\":\"10.1109/ICDL.2019.8796677\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The insulation property of transformer oil is prone to decreasing due to insulation aging caused by the heat, electricity and other factors under the long-term operation, which is vital to the safe operation of power equipment. It has been reported that nanoparticles can improve the insulation properties of transformer oil. However, there has been no evidence showing the effect of nanoparticles on insulation properties of aging transformer oil, and the modified mechanism of nanoparticles is not clear. To reveal the modified mechanism of nanoparticles on aging transformer oil, this paper presents the effects of TiO2 nanoparticles on the insulating properties, space charge characteristics and trap characteristics of aged transformer oil. The results show that the insulation properties of transformer oil with different aging degree are improved by adding TiO2 nanoparticles. The AC breakdown voltage of aged nanofluid is increased significantly to the one of non-aging transformer oil. The lightning impulse breakdown voltage is increased by 30%∼40%. Besides, the partial discharge inception voltage is increased by 12%. Moreover, the space charge characteristics measuring by the pulse electro-acoustic technique show that the charge dissipation rate of the aged transformer oil is increased by 57% with the presence of TiO2 nanoparticles, which reduces the accumulation of space charges. The thermally stimulation current shows that more traps with shallower energy level are induced by TiO2 nanoparticles. The charge trapping and de-trapping process in shallow traps are beneficial to the rapid dissipation of charges and restrains the accumulation of space charges. Therefore, TiO2 nanoparticles can effectively modify the charge accumulation and dissipation characteristics in aging transformer oil and significantly reduce the distortion of electric field, resulting in the improvement of the insulation property.\",\"PeriodicalId\":102217,\"journal\":{\"name\":\"2019 IEEE 20th International Conference on Dielectric Liquids (ICDL)\",\"volume\":\"262 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE 20th International Conference on Dielectric Liquids (ICDL)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDL.2019.8796677\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 20th International Conference on Dielectric Liquids (ICDL)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDL.2019.8796677","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The effects of TiO2 nanoparticles on insulation and charge transport characteristics of aged transformer oil
The insulation property of transformer oil is prone to decreasing due to insulation aging caused by the heat, electricity and other factors under the long-term operation, which is vital to the safe operation of power equipment. It has been reported that nanoparticles can improve the insulation properties of transformer oil. However, there has been no evidence showing the effect of nanoparticles on insulation properties of aging transformer oil, and the modified mechanism of nanoparticles is not clear. To reveal the modified mechanism of nanoparticles on aging transformer oil, this paper presents the effects of TiO2 nanoparticles on the insulating properties, space charge characteristics and trap characteristics of aged transformer oil. The results show that the insulation properties of transformer oil with different aging degree are improved by adding TiO2 nanoparticles. The AC breakdown voltage of aged nanofluid is increased significantly to the one of non-aging transformer oil. The lightning impulse breakdown voltage is increased by 30%∼40%. Besides, the partial discharge inception voltage is increased by 12%. Moreover, the space charge characteristics measuring by the pulse electro-acoustic technique show that the charge dissipation rate of the aged transformer oil is increased by 57% with the presence of TiO2 nanoparticles, which reduces the accumulation of space charges. The thermally stimulation current shows that more traps with shallower energy level are induced by TiO2 nanoparticles. The charge trapping and de-trapping process in shallow traps are beneficial to the rapid dissipation of charges and restrains the accumulation of space charges. Therefore, TiO2 nanoparticles can effectively modify the charge accumulation and dissipation characteristics in aging transformer oil and significantly reduce the distortion of electric field, resulting in the improvement of the insulation property.