恒模准则的多项式公式的volterra滤波方法

D. Fantinato, R. Attux, J. Romano, R. Suyama, A. Neves
{"title":"恒模准则的多项式公式的volterra滤波方法","authors":"D. Fantinato, R. Attux, J. Romano, R. Suyama, A. Neves","doi":"10.1109/ITS.2014.6947963","DOIUrl":null,"url":null,"abstract":"In this work, an extended polynomial formulation of the constant modulus (CM) criterion under quadratic constraints is presented. Based on the method of Lagrange Multipliers, this `Volterra-CM formulation' brings very relevant information about the structure of the null-gradient CM solutions in the equalizer parameter space, including a conjecture regarding the relationship between the smallest multiplier and the optimal CM receiver. In the case of a two-tap filter, the proposed formulation allows that the solutions be obtained in terms of a single parameter, the corresponding Lagrange multiplier. For filters with more than two taps, the problem requires that a nonlinear system be solved, which is done with the aid of an iterative algorithm. The obtained global convergence rates show that the formulation is an effective tool to describe the structure of the optimal CM solution.","PeriodicalId":359348,"journal":{"name":"2014 International Telecommunications Symposium (ITS)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A volterra filtering approach for the polynomial formulation of the constant modulus criterion\",\"authors\":\"D. Fantinato, R. Attux, J. Romano, R. Suyama, A. Neves\",\"doi\":\"10.1109/ITS.2014.6947963\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, an extended polynomial formulation of the constant modulus (CM) criterion under quadratic constraints is presented. Based on the method of Lagrange Multipliers, this `Volterra-CM formulation' brings very relevant information about the structure of the null-gradient CM solutions in the equalizer parameter space, including a conjecture regarding the relationship between the smallest multiplier and the optimal CM receiver. In the case of a two-tap filter, the proposed formulation allows that the solutions be obtained in terms of a single parameter, the corresponding Lagrange multiplier. For filters with more than two taps, the problem requires that a nonlinear system be solved, which is done with the aid of an iterative algorithm. The obtained global convergence rates show that the formulation is an effective tool to describe the structure of the optimal CM solution.\",\"PeriodicalId\":359348,\"journal\":{\"name\":\"2014 International Telecommunications Symposium (ITS)\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 International Telecommunications Symposium (ITS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ITS.2014.6947963\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 International Telecommunications Symposium (ITS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITS.2014.6947963","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文给出了二次约束下常模准则的一个扩展多项式表达式。基于拉格朗日乘数法,该“Volterra-CM公式”提供了均衡器参数空间中零梯度CM解结构的相关信息,包括关于最小乘数与最优CM接收器之间关系的猜想。在双抽头滤波器的情况下,所提出的公式允许用单个参数,即相应的拉格朗日乘子来获得解。对于具有两个以上抽头的滤波器,问题要求求解非线性系统,这是借助于迭代算法来完成的。得到的全局收敛率表明,该公式是描述最优CM解结构的有效工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A volterra filtering approach for the polynomial formulation of the constant modulus criterion
In this work, an extended polynomial formulation of the constant modulus (CM) criterion under quadratic constraints is presented. Based on the method of Lagrange Multipliers, this `Volterra-CM formulation' brings very relevant information about the structure of the null-gradient CM solutions in the equalizer parameter space, including a conjecture regarding the relationship between the smallest multiplier and the optimal CM receiver. In the case of a two-tap filter, the proposed formulation allows that the solutions be obtained in terms of a single parameter, the corresponding Lagrange multiplier. For filters with more than two taps, the problem requires that a nonlinear system be solved, which is done with the aid of an iterative algorithm. The obtained global convergence rates show that the formulation is an effective tool to describe the structure of the optimal CM solution.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信