D. Tasker, J. Goforth, H. Oona, Gerald Kiuttu, Matthew Domonkos
{"title":"爆炸成形熔丝(EFF)开路开关的实验与理论分析","authors":"D. Tasker, J. Goforth, H. Oona, Gerald Kiuttu, Matthew Domonkos","doi":"10.1109/MEGAGUSS.2006.4530692","DOIUrl":null,"url":null,"abstract":"The EFF is used at Los Alamos as the primary opening switch for high current applications. It has interrupted currents from ~10 kA to 25 MA, thus diverting the current into low inductance loads. To understand and optimize the performance of full-scale experiments, many parameters were studied in a series of small-scale experiments, including: electrical conduction through the explosive products; current density; explosive initiation; insulator type; conductor thickness; conductor metal; metal temper; and on. The results show a marked inverse correlation of peak EFF resistance with current density. In this paper we postulate and refute a simple extrusion mechanism of EFF operation; demonstrate that the EFF switch has a near-ideal profile for producing flat-topped voltage profiles; and explore possible mechanisms for the degradation of small scale switch performance.","PeriodicalId":338246,"journal":{"name":"2006 IEEE International Conference on Megagauss Magnetic Field Generation and Related Topics","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Experimental and Theoretical Analyses of Explosively-Formed Fuse (EFF) Opening Switches\",\"authors\":\"D. Tasker, J. Goforth, H. Oona, Gerald Kiuttu, Matthew Domonkos\",\"doi\":\"10.1109/MEGAGUSS.2006.4530692\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The EFF is used at Los Alamos as the primary opening switch for high current applications. It has interrupted currents from ~10 kA to 25 MA, thus diverting the current into low inductance loads. To understand and optimize the performance of full-scale experiments, many parameters were studied in a series of small-scale experiments, including: electrical conduction through the explosive products; current density; explosive initiation; insulator type; conductor thickness; conductor metal; metal temper; and on. The results show a marked inverse correlation of peak EFF resistance with current density. In this paper we postulate and refute a simple extrusion mechanism of EFF operation; demonstrate that the EFF switch has a near-ideal profile for producing flat-topped voltage profiles; and explore possible mechanisms for the degradation of small scale switch performance.\",\"PeriodicalId\":338246,\"journal\":{\"name\":\"2006 IEEE International Conference on Megagauss Magnetic Field Generation and Related Topics\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 IEEE International Conference on Megagauss Magnetic Field Generation and Related Topics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MEGAGUSS.2006.4530692\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 IEEE International Conference on Megagauss Magnetic Field Generation and Related Topics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MEGAGUSS.2006.4530692","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Experimental and Theoretical Analyses of Explosively-Formed Fuse (EFF) Opening Switches
The EFF is used at Los Alamos as the primary opening switch for high current applications. It has interrupted currents from ~10 kA to 25 MA, thus diverting the current into low inductance loads. To understand and optimize the performance of full-scale experiments, many parameters were studied in a series of small-scale experiments, including: electrical conduction through the explosive products; current density; explosive initiation; insulator type; conductor thickness; conductor metal; metal temper; and on. The results show a marked inverse correlation of peak EFF resistance with current density. In this paper we postulate and refute a simple extrusion mechanism of EFF operation; demonstrate that the EFF switch has a near-ideal profile for producing flat-topped voltage profiles; and explore possible mechanisms for the degradation of small scale switch performance.