分数阶离散线性系统的鲁棒稳定性条件

A. Ruszewski
{"title":"分数阶离散线性系统的鲁棒稳定性条件","authors":"A. Ruszewski","doi":"10.1109/MMAR.2017.8046886","DOIUrl":null,"url":null,"abstract":"The paper considers the robust stability problem of uncertain discrete-time fractional order linear state-space systems. The state matrix is the interval matrix whose entries are convex combinations of the entries of two known constant matrices. The necessary and sufficient condition for robust stability is proposed. This condition is stated with respect to eigenvalue-loci placement in the complex plane. The sufficient condition for robust stability based on matrix measures is also given. In this case the rectangle covering all the eigenvalues of the interval state matrix is determined.","PeriodicalId":189753,"journal":{"name":"2017 22nd International Conference on Methods and Models in Automation and Robotics (MMAR)","volume":"590 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Robust stability conditions of fractional order discrete-time linear systems\",\"authors\":\"A. Ruszewski\",\"doi\":\"10.1109/MMAR.2017.8046886\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper considers the robust stability problem of uncertain discrete-time fractional order linear state-space systems. The state matrix is the interval matrix whose entries are convex combinations of the entries of two known constant matrices. The necessary and sufficient condition for robust stability is proposed. This condition is stated with respect to eigenvalue-loci placement in the complex plane. The sufficient condition for robust stability based on matrix measures is also given. In this case the rectangle covering all the eigenvalues of the interval state matrix is determined.\",\"PeriodicalId\":189753,\"journal\":{\"name\":\"2017 22nd International Conference on Methods and Models in Automation and Robotics (MMAR)\",\"volume\":\"590 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 22nd International Conference on Methods and Models in Automation and Robotics (MMAR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MMAR.2017.8046886\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 22nd International Conference on Methods and Models in Automation and Robotics (MMAR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MMAR.2017.8046886","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

研究不确定离散分数阶线性状态空间系统的鲁棒稳定性问题。状态矩阵是区间矩阵,其项是两个已知常数矩阵项的凸组合。给出了系统鲁棒稳定的充分必要条件。这个条件是关于特征值轨迹在复平面上的位置。给出了基于矩阵测度的鲁棒稳定性的充分条件。在这种情况下,确定了覆盖区间状态矩阵的所有特征值的矩形。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Robust stability conditions of fractional order discrete-time linear systems
The paper considers the robust stability problem of uncertain discrete-time fractional order linear state-space systems. The state matrix is the interval matrix whose entries are convex combinations of the entries of two known constant matrices. The necessary and sufficient condition for robust stability is proposed. This condition is stated with respect to eigenvalue-loci placement in the complex plane. The sufficient condition for robust stability based on matrix measures is also given. In this case the rectangle covering all the eigenvalues of the interval state matrix is determined.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信