周期噪声下基于视频脉搏波的LSTM PCA心率估计

Chetsadaporn Traivinidsreesuk, Nutcha Yodrabum, Irin Chaikangwan, Taravichet Titijaroonroj
{"title":"周期噪声下基于视频脉搏波的LSTM PCA心率估计","authors":"Chetsadaporn Traivinidsreesuk, Nutcha Yodrabum, Irin Chaikangwan, Taravichet Titijaroonroj","doi":"10.1109/ICSEC56337.2022.10049315","DOIUrl":null,"url":null,"abstract":"A remote photoplethysmography (rPPG) analysis can extract vital signs from the source video, including heart rate estimation. One of the problems of heart rate estimation is periodic noise embedded in the source video. It is difficult for an rPPG analysis to discriminate between vital signal information and noise, increasing prediction error. To alleviate this problem, this paper used principal component analysis (PCA) to extract rPPG signals from the input video before forwarding the signal to Long Short Term Memory (LSTM) to estimate heart rate. The experimental results show that, among discrete Fourier Transform method, neural networks, and neural network with LSTM, the proposed method accomplished a much lower MAEP at 15.05, 13.90, and 17.90 in the cases of overall, with no periodic noise, and with periodic noise, respectively.","PeriodicalId":430850,"journal":{"name":"2022 26th International Computer Science and Engineering Conference (ICSEC)","volume":"610 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Heart Rate Estimation by PCA with LSTM from Video-based Plethysmography Under Periodic Noise\",\"authors\":\"Chetsadaporn Traivinidsreesuk, Nutcha Yodrabum, Irin Chaikangwan, Taravichet Titijaroonroj\",\"doi\":\"10.1109/ICSEC56337.2022.10049315\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A remote photoplethysmography (rPPG) analysis can extract vital signs from the source video, including heart rate estimation. One of the problems of heart rate estimation is periodic noise embedded in the source video. It is difficult for an rPPG analysis to discriminate between vital signal information and noise, increasing prediction error. To alleviate this problem, this paper used principal component analysis (PCA) to extract rPPG signals from the input video before forwarding the signal to Long Short Term Memory (LSTM) to estimate heart rate. The experimental results show that, among discrete Fourier Transform method, neural networks, and neural network with LSTM, the proposed method accomplished a much lower MAEP at 15.05, 13.90, and 17.90 in the cases of overall, with no periodic noise, and with periodic noise, respectively.\",\"PeriodicalId\":430850,\"journal\":{\"name\":\"2022 26th International Computer Science and Engineering Conference (ICSEC)\",\"volume\":\"610 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 26th International Computer Science and Engineering Conference (ICSEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSEC56337.2022.10049315\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 26th International Computer Science and Engineering Conference (ICSEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSEC56337.2022.10049315","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

远程光电容积脉搏波(rPPG)分析可以从源视频中提取生命体征,包括心率估计。心率估计的问题之一是嵌入在源视频中的周期性噪声。rPPG分析难以区分重要信号信息和噪声,增加了预测误差。为了解决这一问题,本文利用主成分分析(PCA)从输入视频中提取rPPG信号,然后将信号转发给长短期记忆(LSTM)来估计心率。实验结果表明,在离散傅里叶变换方法、神经网络和带LSTM的神经网络中,本文方法在整体、无周期噪声和有周期噪声情况下的MAEP分别为15.05、13.90和17.90,MAEP较低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Heart Rate Estimation by PCA with LSTM from Video-based Plethysmography Under Periodic Noise
A remote photoplethysmography (rPPG) analysis can extract vital signs from the source video, including heart rate estimation. One of the problems of heart rate estimation is periodic noise embedded in the source video. It is difficult for an rPPG analysis to discriminate between vital signal information and noise, increasing prediction error. To alleviate this problem, this paper used principal component analysis (PCA) to extract rPPG signals from the input video before forwarding the signal to Long Short Term Memory (LSTM) to estimate heart rate. The experimental results show that, among discrete Fourier Transform method, neural networks, and neural network with LSTM, the proposed method accomplished a much lower MAEP at 15.05, 13.90, and 17.90 in the cases of overall, with no periodic noise, and with periodic noise, respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信