基于卷积长短期记忆网络的聚合负荷预测

Yaping Li, Jianguo Yao, Shengchun Yang, Ke Wang
{"title":"基于卷积长短期记忆网络的聚合负荷预测","authors":"Yaping Li, Jianguo Yao, Shengchun Yang, Ke Wang","doi":"10.1109/AEMCSE50948.2020.00183","DOIUrl":null,"url":null,"abstract":"With the rapid development of economy, the proportion of air-conditioning is increasing. Due to modeling difficulties and the different user habits, the current prediction error of air-conditioning load is large. Thus, this paper uses the idea of data-driving modeling and proposes a kind of convutational long short term neural networks (ConvLSTM) based on deep learning to build air-conditioning aggregation model. Experiments show the effectiveness of the method.","PeriodicalId":246841,"journal":{"name":"2020 3rd International Conference on Advanced Electronic Materials, Computers and Software Engineering (AEMCSE)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Aggregated Load Prediction Based on Convolutional Long and Short-Term Memory Network\",\"authors\":\"Yaping Li, Jianguo Yao, Shengchun Yang, Ke Wang\",\"doi\":\"10.1109/AEMCSE50948.2020.00183\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the rapid development of economy, the proportion of air-conditioning is increasing. Due to modeling difficulties and the different user habits, the current prediction error of air-conditioning load is large. Thus, this paper uses the idea of data-driving modeling and proposes a kind of convutational long short term neural networks (ConvLSTM) based on deep learning to build air-conditioning aggregation model. Experiments show the effectiveness of the method.\",\"PeriodicalId\":246841,\"journal\":{\"name\":\"2020 3rd International Conference on Advanced Electronic Materials, Computers and Software Engineering (AEMCSE)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 3rd International Conference on Advanced Electronic Materials, Computers and Software Engineering (AEMCSE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AEMCSE50948.2020.00183\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 3rd International Conference on Advanced Electronic Materials, Computers and Software Engineering (AEMCSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AEMCSE50948.2020.00183","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

随着经济的快速发展,空调的比重越来越大。由于建模困难和用户使用习惯不同,目前空调负荷预测误差较大。因此,本文利用数据驱动建模的思想,提出了一种基于深度学习的常规长短期神经网络(ConvLSTM)来构建空调聚合模型。实验证明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Aggregated Load Prediction Based on Convolutional Long and Short-Term Memory Network
With the rapid development of economy, the proportion of air-conditioning is increasing. Due to modeling difficulties and the different user habits, the current prediction error of air-conditioning load is large. Thus, this paper uses the idea of data-driving modeling and proposes a kind of convutational long short term neural networks (ConvLSTM) based on deep learning to build air-conditioning aggregation model. Experiments show the effectiveness of the method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信