Zhihong Zeng, Tianhong Fang, Shishir K. Shah, I. Kakadiaris
{"title":"人脸识别的局部特征哈希","authors":"Zhihong Zeng, Tianhong Fang, Shishir K. Shah, I. Kakadiaris","doi":"10.1109/BTAS.2009.5339013","DOIUrl":null,"url":null,"abstract":"In this paper, we present Local Feature Hashing (LFH), a novel approach for face recognition. Focusing on the scalability of face recognition systems, we build our LFH algorithm on the p-stable distribution Locality-Sensitive Hashing (pLSH) scheme that projects a set of local features representing a query image to an ID histogram where the maximum bin is regarded as the recognized ID. Our extensive experiments on two publicly available databases demonstrate the advantages of our LFH method, including: i) significant computational improvement over naive search; ii) hashing in high-dimensional Euclidean space without embedding; and iii) robustness to pose, facial expression, illumination and partial occlusion.","PeriodicalId":325900,"journal":{"name":"2009 IEEE 3rd International Conference on Biometrics: Theory, Applications, and Systems","volume":"235 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Local Feature Hashing for face recognition\",\"authors\":\"Zhihong Zeng, Tianhong Fang, Shishir K. Shah, I. Kakadiaris\",\"doi\":\"10.1109/BTAS.2009.5339013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present Local Feature Hashing (LFH), a novel approach for face recognition. Focusing on the scalability of face recognition systems, we build our LFH algorithm on the p-stable distribution Locality-Sensitive Hashing (pLSH) scheme that projects a set of local features representing a query image to an ID histogram where the maximum bin is regarded as the recognized ID. Our extensive experiments on two publicly available databases demonstrate the advantages of our LFH method, including: i) significant computational improvement over naive search; ii) hashing in high-dimensional Euclidean space without embedding; and iii) robustness to pose, facial expression, illumination and partial occlusion.\",\"PeriodicalId\":325900,\"journal\":{\"name\":\"2009 IEEE 3rd International Conference on Biometrics: Theory, Applications, and Systems\",\"volume\":\"235 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-09-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 IEEE 3rd International Conference on Biometrics: Theory, Applications, and Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BTAS.2009.5339013\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE 3rd International Conference on Biometrics: Theory, Applications, and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BTAS.2009.5339013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
In this paper, we present Local Feature Hashing (LFH), a novel approach for face recognition. Focusing on the scalability of face recognition systems, we build our LFH algorithm on the p-stable distribution Locality-Sensitive Hashing (pLSH) scheme that projects a set of local features representing a query image to an ID histogram where the maximum bin is regarded as the recognized ID. Our extensive experiments on two publicly available databases demonstrate the advantages of our LFH method, including: i) significant computational improvement over naive search; ii) hashing in high-dimensional Euclidean space without embedding; and iii) robustness to pose, facial expression, illumination and partial occlusion.