预测用于管理云上的高级sla的截止日期调度器的作业资源需求

Gemma Reig, Javier Alonso, Jordi Guitart
{"title":"预测用于管理云上的高级sla的截止日期调度器的作业资源需求","authors":"Gemma Reig, Javier Alonso, Jordi Guitart","doi":"10.1109/NCA.2010.28","DOIUrl":null,"url":null,"abstract":"For a non IT expert to use services in the Cloud is more natural to negotiate the QoS with the provider in terms of service-level metrics --e.g. job deadlines-- instead of resource-level metrics --e.g. CPU MHz. However, current infrastructures only support resource-level metrics --e.g. CPU share and memory allocation-- and there is not a well-known mechanism to translate from service-level metrics to resource-level metrics. Moreover, the lack of precise information regarding the requirements of the services leads to an inefficient resource allocation --usually, providers allocate whole resources to prevent SLA violations. According to this, we propose a novel mechanism to overcome this translation problem using an online prediction system which includes a fast analytical predictor and an adaptive machine learning based predictor. We also show how a deadline scheduler could use these predictions to help providers to make the most of their resources. Our evaluation shows: i) that fast algorithms are able to make predictions with an 11% and 17% of relative error for the CPU and memory respectively; ii) the potential of using accurate predictions in the scheduling compared to simple yet well-known schedulers.","PeriodicalId":276374,"journal":{"name":"2010 Ninth IEEE International Symposium on Network Computing and Applications","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"58","resultStr":"{\"title\":\"Prediction of Job Resource Requirements for Deadline Schedulers to Manage High-Level SLAs on the Cloud\",\"authors\":\"Gemma Reig, Javier Alonso, Jordi Guitart\",\"doi\":\"10.1109/NCA.2010.28\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For a non IT expert to use services in the Cloud is more natural to negotiate the QoS with the provider in terms of service-level metrics --e.g. job deadlines-- instead of resource-level metrics --e.g. CPU MHz. However, current infrastructures only support resource-level metrics --e.g. CPU share and memory allocation-- and there is not a well-known mechanism to translate from service-level metrics to resource-level metrics. Moreover, the lack of precise information regarding the requirements of the services leads to an inefficient resource allocation --usually, providers allocate whole resources to prevent SLA violations. According to this, we propose a novel mechanism to overcome this translation problem using an online prediction system which includes a fast analytical predictor and an adaptive machine learning based predictor. We also show how a deadline scheduler could use these predictions to help providers to make the most of their resources. Our evaluation shows: i) that fast algorithms are able to make predictions with an 11% and 17% of relative error for the CPU and memory respectively; ii) the potential of using accurate predictions in the scheduling compared to simple yet well-known schedulers.\",\"PeriodicalId\":276374,\"journal\":{\"name\":\"2010 Ninth IEEE International Symposium on Network Computing and Applications\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"58\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 Ninth IEEE International Symposium on Network Computing and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NCA.2010.28\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 Ninth IEEE International Symposium on Network Computing and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NCA.2010.28","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 58

摘要

对于使用云服务的非IT专家来说,根据服务级别指标(例如作业截止日期)而不是资源级别指标(例如CPU MHz)与提供商协商QoS更为自然。然而,当前的基础设施只支持资源级指标——例如CPU共享和内存分配——并且没有一种众所周知的机制将服务级指标转换为资源级指标。此外,缺乏关于服务需求的精确信息会导致资源分配效率低下——通常,提供商分配整个资源以防止违反SLA。基于此,我们提出了一种新的机制来克服翻译问题,使用在线预测系统,该系统包括一个快速分析预测器和一个基于自适应机器学习的预测器。我们还展示了截止日期调度程序如何使用这些预测来帮助提供者充分利用其资源。我们的评估表明:i)快速算法能够以相对于CPU和内存分别为11%和17%的相对误差进行预测;Ii)与简单但众所周知的调度程序相比,在调度中使用准确预测的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Prediction of Job Resource Requirements for Deadline Schedulers to Manage High-Level SLAs on the Cloud
For a non IT expert to use services in the Cloud is more natural to negotiate the QoS with the provider in terms of service-level metrics --e.g. job deadlines-- instead of resource-level metrics --e.g. CPU MHz. However, current infrastructures only support resource-level metrics --e.g. CPU share and memory allocation-- and there is not a well-known mechanism to translate from service-level metrics to resource-level metrics. Moreover, the lack of precise information regarding the requirements of the services leads to an inefficient resource allocation --usually, providers allocate whole resources to prevent SLA violations. According to this, we propose a novel mechanism to overcome this translation problem using an online prediction system which includes a fast analytical predictor and an adaptive machine learning based predictor. We also show how a deadline scheduler could use these predictions to help providers to make the most of their resources. Our evaluation shows: i) that fast algorithms are able to make predictions with an 11% and 17% of relative error for the CPU and memory respectively; ii) the potential of using accurate predictions in the scheduling compared to simple yet well-known schedulers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信