在面向列的DBMS中存储和索引RDF数据

Xin Wang, Shuyi Wang, Pufeng Du, Zhiyong Feng
{"title":"在面向列的DBMS中存储和索引RDF数据","authors":"Xin Wang, Shuyi Wang, Pufeng Du, Zhiyong Feng","doi":"10.1109/DBTA.2010.5659025","DOIUrl":null,"url":null,"abstract":"Effcient RDF data management is an essential factor in realizing the Semantic Web vision. However, most existing RDF storage schemes based on row-store relational databases are constrained in terms of efficiency and scalability. In this paper, we propose an RDF storage scheme that implements sextuple indexing for RDF triples using a column-oriented DBMS. To evaluate the performance of our approach, large-scale datasets upto 13 million triples are generated and benchmark queries that cover important RDF join patterns are devised. The experimental results show that our approach outperforms the row-oriented DBMS approach by upto an order of magnitude and is even competitive to the best state-of-the-art native RDF store.","PeriodicalId":320509,"journal":{"name":"2010 2nd International Workshop on Database Technology and Applications","volume":"82 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Storing and Indexing RDF Data in a Column-Oriented DBMS\",\"authors\":\"Xin Wang, Shuyi Wang, Pufeng Du, Zhiyong Feng\",\"doi\":\"10.1109/DBTA.2010.5659025\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Effcient RDF data management is an essential factor in realizing the Semantic Web vision. However, most existing RDF storage schemes based on row-store relational databases are constrained in terms of efficiency and scalability. In this paper, we propose an RDF storage scheme that implements sextuple indexing for RDF triples using a column-oriented DBMS. To evaluate the performance of our approach, large-scale datasets upto 13 million triples are generated and benchmark queries that cover important RDF join patterns are devised. The experimental results show that our approach outperforms the row-oriented DBMS approach by upto an order of magnitude and is even competitive to the best state-of-the-art native RDF store.\",\"PeriodicalId\":320509,\"journal\":{\"name\":\"2010 2nd International Workshop on Database Technology and Applications\",\"volume\":\"82 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-12-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 2nd International Workshop on Database Technology and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DBTA.2010.5659025\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 2nd International Workshop on Database Technology and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DBTA.2010.5659025","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

高效的RDF数据管理是实现语义Web愿景的关键因素。然而,大多数现有的基于行存储关系数据库的RDF存储模式在效率和可伸缩性方面受到限制。在本文中,我们提出了一种RDF存储方案,该方案使用面向列的DBMS实现RDF三元组的六元索引。为了评估我们的方法的性能,我们生成了多达1300万个三元组的大规模数据集,并设计了涵盖重要RDF连接模式的基准查询。实验结果表明,我们的方法比面向行DBMS方法的性能高出一个数量级,甚至可以与最先进的原生RDF存储相媲美。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Storing and Indexing RDF Data in a Column-Oriented DBMS
Effcient RDF data management is an essential factor in realizing the Semantic Web vision. However, most existing RDF storage schemes based on row-store relational databases are constrained in terms of efficiency and scalability. In this paper, we propose an RDF storage scheme that implements sextuple indexing for RDF triples using a column-oriented DBMS. To evaluate the performance of our approach, large-scale datasets upto 13 million triples are generated and benchmark queries that cover important RDF join patterns are devised. The experimental results show that our approach outperforms the row-oriented DBMS approach by upto an order of magnitude and is even competitive to the best state-of-the-art native RDF store.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信