慢衰落信道中编码MAPSK信号的最大似然信噪比估计

Zhixin Li, Dewei Yang, Hua Wang, N. Wu, Jingming Kuang
{"title":"慢衰落信道中编码MAPSK信号的最大似然信噪比估计","authors":"Zhixin Li, Dewei Yang, Hua Wang, N. Wu, Jingming Kuang","doi":"10.1109/WCSP.2013.6677047","DOIUrl":null,"url":null,"abstract":"In this paper, an accurate maximum likelihood (ML) signal-to-noise ratio (SNR) estimator is proposed for coded M-ary amplitude phase shift keying (APSK) signals over a slowly time-varying fading channel. The proposed estimator significantly improves the estimation precision at low SNRs by utilizing a posteriori probabilities of coded bits provided by channel decoder. Moreover, a methodology to calculate the Cramer-Rao bound (CRB) of the proposed code-aided (CA) ML SNR estimator for coded M-APSK signals is derived. Compared with moments-based estimators and the non-data-aided (NDA) Expectation Maximization (EM) based estimator for M-APSK signals, simulation results show that the proposed estimator exploiting a posteriori information out of low-density parity-check (LDPC) decoder or Turbo decoder performs better, especially at low SNRs. It is also validated that the performances of the proposed CA-ML SNR estimator for coded 16- and 32-APSK signals can closely achieve the derived CRB.","PeriodicalId":342639,"journal":{"name":"2013 International Conference on Wireless Communications and Signal Processing","volume":"232 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Maximum likelihood SNR estimator for coded MAPSK signals in slow fading channels\",\"authors\":\"Zhixin Li, Dewei Yang, Hua Wang, N. Wu, Jingming Kuang\",\"doi\":\"10.1109/WCSP.2013.6677047\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, an accurate maximum likelihood (ML) signal-to-noise ratio (SNR) estimator is proposed for coded M-ary amplitude phase shift keying (APSK) signals over a slowly time-varying fading channel. The proposed estimator significantly improves the estimation precision at low SNRs by utilizing a posteriori probabilities of coded bits provided by channel decoder. Moreover, a methodology to calculate the Cramer-Rao bound (CRB) of the proposed code-aided (CA) ML SNR estimator for coded M-APSK signals is derived. Compared with moments-based estimators and the non-data-aided (NDA) Expectation Maximization (EM) based estimator for M-APSK signals, simulation results show that the proposed estimator exploiting a posteriori information out of low-density parity-check (LDPC) decoder or Turbo decoder performs better, especially at low SNRs. It is also validated that the performances of the proposed CA-ML SNR estimator for coded 16- and 32-APSK signals can closely achieve the derived CRB.\",\"PeriodicalId\":342639,\"journal\":{\"name\":\"2013 International Conference on Wireless Communications and Signal Processing\",\"volume\":\"232 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-12-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 International Conference on Wireless Communications and Signal Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WCSP.2013.6677047\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 International Conference on Wireless Communications and Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WCSP.2013.6677047","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

本文针对慢时变衰落信道上的编码m振幅相移键控(APSK)信号,提出了一种精确的最大似然信噪比估计方法。该估计器利用信道解码器提供的编码位的后验概率,显著提高了低信噪比下的估计精度。此外,本文还推导了编码M-APSK信号的编码辅助ML信噪比估计器的Cramer-Rao界(CRB)的计算方法。与基于矩的估计器和基于非数据辅助(NDA)期望最大化(EM)的M-APSK信号估计器相比,仿真结果表明,利用低密度奇偶校验(LDPC)解码器或Turbo解码器的后验信息的估计器具有更好的性能,特别是在低信噪比下。实验还验证了所提出的CA-ML信噪比估计器对编码的16- apsk和32-APSK信号的性能可以接近推导的CRB。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Maximum likelihood SNR estimator for coded MAPSK signals in slow fading channels
In this paper, an accurate maximum likelihood (ML) signal-to-noise ratio (SNR) estimator is proposed for coded M-ary amplitude phase shift keying (APSK) signals over a slowly time-varying fading channel. The proposed estimator significantly improves the estimation precision at low SNRs by utilizing a posteriori probabilities of coded bits provided by channel decoder. Moreover, a methodology to calculate the Cramer-Rao bound (CRB) of the proposed code-aided (CA) ML SNR estimator for coded M-APSK signals is derived. Compared with moments-based estimators and the non-data-aided (NDA) Expectation Maximization (EM) based estimator for M-APSK signals, simulation results show that the proposed estimator exploiting a posteriori information out of low-density parity-check (LDPC) decoder or Turbo decoder performs better, especially at low SNRs. It is also validated that the performances of the proposed CA-ML SNR estimator for coded 16- and 32-APSK signals can closely achieve the derived CRB.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信