结合小波CNN和小波池的纹理分类统一神经MRA架构

K. K. Tarafdar, Q. Saifee, V. Gadre
{"title":"结合小波CNN和小波池的纹理分类统一神经MRA架构","authors":"K. K. Tarafdar, Q. Saifee, V. Gadre","doi":"10.1109/SPCOM55316.2022.9840760","DOIUrl":null,"url":null,"abstract":"This paper introduces a novel unified neural Multi-Resolution Analysis (MRA) architecture that uses Discrete Wavelet Transform (DWT) integrated Convolutional Neural Network (CNN) along with DWT pooling. As convolution with pooling operation in CNN has equivalence with filtering and downsampling operation in a DWT filter bank, both are unified to form an end-to-end deep learning wavelet CNN model. The DWT pooling mechanism is also used to further enhance the MRA capability of this wavelet CNN. Using the first two wavelets of the Daubechies family, we present here a comprehensive set of improved texture classification results with several updates in the model architecture. These updates in the CNN model architecture apply to any node generally associated with the time-frequency analysis of the input signal.","PeriodicalId":246982,"journal":{"name":"2022 IEEE International Conference on Signal Processing and Communications (SPCOM)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A unified neural MRA architecture combining wavelet CNN and wavelet pooling for texture classification\",\"authors\":\"K. K. Tarafdar, Q. Saifee, V. Gadre\",\"doi\":\"10.1109/SPCOM55316.2022.9840760\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper introduces a novel unified neural Multi-Resolution Analysis (MRA) architecture that uses Discrete Wavelet Transform (DWT) integrated Convolutional Neural Network (CNN) along with DWT pooling. As convolution with pooling operation in CNN has equivalence with filtering and downsampling operation in a DWT filter bank, both are unified to form an end-to-end deep learning wavelet CNN model. The DWT pooling mechanism is also used to further enhance the MRA capability of this wavelet CNN. Using the first two wavelets of the Daubechies family, we present here a comprehensive set of improved texture classification results with several updates in the model architecture. These updates in the CNN model architecture apply to any node generally associated with the time-frequency analysis of the input signal.\",\"PeriodicalId\":246982,\"journal\":{\"name\":\"2022 IEEE International Conference on Signal Processing and Communications (SPCOM)\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE International Conference on Signal Processing and Communications (SPCOM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SPCOM55316.2022.9840760\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Signal Processing and Communications (SPCOM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SPCOM55316.2022.9840760","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了一种新的统一神经多分辨率分析(MRA)架构,该架构采用离散小波变换(DWT)集成卷积神经网络(CNN)和DWT池。由于CNN中具有池化操作的卷积与DWT滤波器组中的滤波和下采样操作是等价的,因此将两者统一起来,形成端到端的深度学习小波CNN模型。利用DWT池化机制进一步增强了小波CNN的MRA能力。利用Daubechies家族的前两个小波,我们提出了一套全面改进的纹理分类结果,并在模型架构上进行了一些更新。CNN模型架构中的这些更新适用于通常与输入信号的时频分析相关的任何节点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A unified neural MRA architecture combining wavelet CNN and wavelet pooling for texture classification
This paper introduces a novel unified neural Multi-Resolution Analysis (MRA) architecture that uses Discrete Wavelet Transform (DWT) integrated Convolutional Neural Network (CNN) along with DWT pooling. As convolution with pooling operation in CNN has equivalence with filtering and downsampling operation in a DWT filter bank, both are unified to form an end-to-end deep learning wavelet CNN model. The DWT pooling mechanism is also used to further enhance the MRA capability of this wavelet CNN. Using the first two wavelets of the Daubechies family, we present here a comprehensive set of improved texture classification results with several updates in the model architecture. These updates in the CNN model architecture apply to any node generally associated with the time-frequency analysis of the input signal.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信