一类Petri网和在确定多项式时间内可解的可达性问题

Keiko Nakamura, Kiyohiko Nakamura, A. Ichikawa
{"title":"一类Petri网和在确定多项式时间内可解的可达性问题","authors":"Keiko Nakamura, Kiyohiko Nakamura, A. Ichikawa","doi":"10.1109/PNPM.1989.68559","DOIUrl":null,"url":null,"abstract":"The computational complexity of reachability problems for Petri nets is analyzed and a new class of Petri nets is introduced. A net of the class is composed of subnets of state machines. Sufficient conditions on initial and target markings are obtained under which the reachability problem for the class is solvable in deterministic polynomial time. Also presented is an algorithm that examines in deterministic polynomial time whether a Petri net is in the class.<<ETX>>","PeriodicalId":366060,"journal":{"name":"Proceedings of the Third International Workshop on Petri Nets and Performance Models, PNPM89","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1989-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A class of Petri nets and a reachability problem solvable in deterministic polynomial time\",\"authors\":\"Keiko Nakamura, Kiyohiko Nakamura, A. Ichikawa\",\"doi\":\"10.1109/PNPM.1989.68559\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The computational complexity of reachability problems for Petri nets is analyzed and a new class of Petri nets is introduced. A net of the class is composed of subnets of state machines. Sufficient conditions on initial and target markings are obtained under which the reachability problem for the class is solvable in deterministic polynomial time. Also presented is an algorithm that examines in deterministic polynomial time whether a Petri net is in the class.<<ETX>>\",\"PeriodicalId\":366060,\"journal\":{\"name\":\"Proceedings of the Third International Workshop on Petri Nets and Performance Models, PNPM89\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1989-12-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Third International Workshop on Petri Nets and Performance Models, PNPM89\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PNPM.1989.68559\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Third International Workshop on Petri Nets and Performance Models, PNPM89","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PNPM.1989.68559","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

分析了Petri网可达性问题的计算复杂度,并引入了一类新的Petri网。该类的网络由状态机的子网组成。得到了初始标记和目标标记存在的充分条件,在此条件下,该类可达性问题在确定性多项式时间内可解。本文还提出了一种在确定多项式时间内检测Petri网是否在类中的算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A class of Petri nets and a reachability problem solvable in deterministic polynomial time
The computational complexity of reachability problems for Petri nets is analyzed and a new class of Petri nets is introduced. A net of the class is composed of subnets of state machines. Sufficient conditions on initial and target markings are obtained under which the reachability problem for the class is solvable in deterministic polynomial time. Also presented is an algorithm that examines in deterministic polynomial time whether a Petri net is in the class.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信