Alex Mikes, Katherine Edmonds, R. Stone, Bryony DuPont
{"title":"优化设计库数据挖掘算法实现功能建模自动化","authors":"Alex Mikes, Katherine Edmonds, R. Stone, Bryony DuPont","doi":"10.1115/detc2020-22346","DOIUrl":null,"url":null,"abstract":"\n The purpose of this research is to find the optimum values for threshold variables used in a data mining and prediction algorithm. We also minimize and stratify a training set to find the optimum size based on how well it represents the whole dataset. Our specific focus is automating functional models, but the method can be applied to any dataset with a similar structure. We iterate through different values for two of the threshold variables in this process and cross-validate to calculate the average accuracy and find the optimum values for each variable. We optimize the training set by reducing the size by 78% and stratifying the data, whereby we achieve an accuracy that is 96% as good as the whole training set and takes 50% less time. These optimum values can be used to better predict the functions and flows of any future product based on its constituent components, which can be used to generate a complete functional model.","PeriodicalId":415040,"journal":{"name":"Volume 11A: 46th Design Automation Conference (DAC)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Optimizing an Algorithm for Data Mining a Design Repository to Automate Functional Modeling\",\"authors\":\"Alex Mikes, Katherine Edmonds, R. Stone, Bryony DuPont\",\"doi\":\"10.1115/detc2020-22346\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n The purpose of this research is to find the optimum values for threshold variables used in a data mining and prediction algorithm. We also minimize and stratify a training set to find the optimum size based on how well it represents the whole dataset. Our specific focus is automating functional models, but the method can be applied to any dataset with a similar structure. We iterate through different values for two of the threshold variables in this process and cross-validate to calculate the average accuracy and find the optimum values for each variable. We optimize the training set by reducing the size by 78% and stratifying the data, whereby we achieve an accuracy that is 96% as good as the whole training set and takes 50% less time. These optimum values can be used to better predict the functions and flows of any future product based on its constituent components, which can be used to generate a complete functional model.\",\"PeriodicalId\":415040,\"journal\":{\"name\":\"Volume 11A: 46th Design Automation Conference (DAC)\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-08-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 11A: 46th Design Automation Conference (DAC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/detc2020-22346\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 11A: 46th Design Automation Conference (DAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/detc2020-22346","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Optimizing an Algorithm for Data Mining a Design Repository to Automate Functional Modeling
The purpose of this research is to find the optimum values for threshold variables used in a data mining and prediction algorithm. We also minimize and stratify a training set to find the optimum size based on how well it represents the whole dataset. Our specific focus is automating functional models, but the method can be applied to any dataset with a similar structure. We iterate through different values for two of the threshold variables in this process and cross-validate to calculate the average accuracy and find the optimum values for each variable. We optimize the training set by reducing the size by 78% and stratifying the data, whereby we achieve an accuracy that is 96% as good as the whole training set and takes 50% less time. These optimum values can be used to better predict the functions and flows of any future product based on its constituent components, which can be used to generate a complete functional model.