{"title":"基于截断和函数数据的广义回归估计的几乎肯定收敛率","authors":"Halima Boudada, S. Leulmi, Soumia Kharfouch, Халима Будада, Сара Леулми, Соумиа Харфучи","doi":"10.17516/1997-1397-2020-13-4-480-491","DOIUrl":null,"url":null,"abstract":"In this paper, a nonparametric estimation of a generalized regression function is proposed. The real response random variable (r.v.) is subject to left-truncation by another r.v. while the covariate takes its values in an infinite dimensional space. Under standard assumptions, the pointwise and the uniform almost sure convergences, of the proposed estimator, are established","PeriodicalId":422202,"journal":{"name":"Journal of Siberian Federal University. Mathematics and Physics","volume":"203 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Rate of the Almost Sure Convergence of a Generalized Regression Estimate Based on Truncated and Functional Data\",\"authors\":\"Halima Boudada, S. Leulmi, Soumia Kharfouch, Халима Будада, Сара Леулми, Соумиа Харфучи\",\"doi\":\"10.17516/1997-1397-2020-13-4-480-491\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a nonparametric estimation of a generalized regression function is proposed. The real response random variable (r.v.) is subject to left-truncation by another r.v. while the covariate takes its values in an infinite dimensional space. Under standard assumptions, the pointwise and the uniform almost sure convergences, of the proposed estimator, are established\",\"PeriodicalId\":422202,\"journal\":{\"name\":\"Journal of Siberian Federal University. Mathematics and Physics\",\"volume\":\"203 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Siberian Federal University. Mathematics and Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17516/1997-1397-2020-13-4-480-491\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Siberian Federal University. Mathematics and Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17516/1997-1397-2020-13-4-480-491","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Rate of the Almost Sure Convergence of a Generalized Regression Estimate Based on Truncated and Functional Data
In this paper, a nonparametric estimation of a generalized regression function is proposed. The real response random variable (r.v.) is subject to left-truncation by another r.v. while the covariate takes its values in an infinite dimensional space. Under standard assumptions, the pointwise and the uniform almost sure convergences, of the proposed estimator, are established