二值分类器性能指标分析

Charles Parker
{"title":"二值分类器性能指标分析","authors":"Charles Parker","doi":"10.1109/ICDM.2011.21","DOIUrl":null,"url":null,"abstract":"If one is given two binary classifiers and a set of test data, it should be straightforward to determine which of the two classifiers is the superior. Recent work, however, has called into question many of the methods heretofore accepted as standard for this task. In this paper, we analyze seven ways of determining if one classifier is better than another, given the same test data. Five of these are long established and two are relative newcomers. We review and extend work showing that one of these methods is clearly inappropriate, and then conduct an empirical analysis with a large number of datasets to evaluate the real-world implications of our theoretical analysis. Both our empirical and theoretical results converge strongly towards one of the newer methods.","PeriodicalId":106216,"journal":{"name":"2011 IEEE 11th International Conference on Data Mining","volume":"200 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"53","resultStr":"{\"title\":\"An Analysis of Performance Measures for Binary Classifiers\",\"authors\":\"Charles Parker\",\"doi\":\"10.1109/ICDM.2011.21\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"If one is given two binary classifiers and a set of test data, it should be straightforward to determine which of the two classifiers is the superior. Recent work, however, has called into question many of the methods heretofore accepted as standard for this task. In this paper, we analyze seven ways of determining if one classifier is better than another, given the same test data. Five of these are long established and two are relative newcomers. We review and extend work showing that one of these methods is clearly inappropriate, and then conduct an empirical analysis with a large number of datasets to evaluate the real-world implications of our theoretical analysis. Both our empirical and theoretical results converge strongly towards one of the newer methods.\",\"PeriodicalId\":106216,\"journal\":{\"name\":\"2011 IEEE 11th International Conference on Data Mining\",\"volume\":\"200 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-12-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"53\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE 11th International Conference on Data Mining\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDM.2011.21\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE 11th International Conference on Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDM.2011.21","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 53

摘要

如果给定两个二元分类器和一组测试数据,那么确定两个分类器中哪一个更优应该是很简单的。然而,最近的工作对迄今为止被认为是这项任务标准的许多方法提出了质疑。在本文中,我们分析了在给定相同测试数据的情况下,确定一个分类器是否优于另一个分类器的七种方法。其中5家成立已久,2家相对较新。我们回顾和扩展工作,表明其中一种方法显然是不合适的,然后用大量数据集进行实证分析,以评估我们的理论分析的现实意义。我们的经验和理论结果都强烈倾向于一种较新的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Analysis of Performance Measures for Binary Classifiers
If one is given two binary classifiers and a set of test data, it should be straightforward to determine which of the two classifiers is the superior. Recent work, however, has called into question many of the methods heretofore accepted as standard for this task. In this paper, we analyze seven ways of determining if one classifier is better than another, given the same test data. Five of these are long established and two are relative newcomers. We review and extend work showing that one of these methods is clearly inappropriate, and then conduct an empirical analysis with a large number of datasets to evaluate the real-world implications of our theoretical analysis. Both our empirical and theoretical results converge strongly towards one of the newer methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信