特征标注三维多边形地图的单目定位

Alexander Mock, T. Wiemann, J. Hertzberg
{"title":"特征标注三维多边形地图的单目定位","authors":"Alexander Mock, T. Wiemann, J. Hertzberg","doi":"10.1109/ecmr50962.2021.9568810","DOIUrl":null,"url":null,"abstract":"Localization in six degrees of freedom is becoming increasingly relevant, especially in indoor environments where GPS is not available. To localize autonomous vehicles like UAVs in such areas, reliable methods for self-localization with low-weight sensors are required. In this paper, we present an approach to precisely localize systems with monocular cameras in polygonal 3D maps annotated with keypoints and feature descriptors computed from LiDAR data and associated reference images. Our contribution consists of offline map computation from high resolution 3D point clouds with corresponding reference images as well as online localization within these maps using low cost sensors. During localization, features extracted from the vehicle’s camera image stream are matched against the reference map. The proposed method is capable of real-time localization and suitable for precise global localization. The evaluation shows comparable results to state of the art with high re-localization accuracy.","PeriodicalId":200521,"journal":{"name":"2021 European Conference on Mobile Robots (ECMR)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Monocular Localization in Feature-Annotated 3D Polygon Maps\",\"authors\":\"Alexander Mock, T. Wiemann, J. Hertzberg\",\"doi\":\"10.1109/ecmr50962.2021.9568810\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Localization in six degrees of freedom is becoming increasingly relevant, especially in indoor environments where GPS is not available. To localize autonomous vehicles like UAVs in such areas, reliable methods for self-localization with low-weight sensors are required. In this paper, we present an approach to precisely localize systems with monocular cameras in polygonal 3D maps annotated with keypoints and feature descriptors computed from LiDAR data and associated reference images. Our contribution consists of offline map computation from high resolution 3D point clouds with corresponding reference images as well as online localization within these maps using low cost sensors. During localization, features extracted from the vehicle’s camera image stream are matched against the reference map. The proposed method is capable of real-time localization and suitable for precise global localization. The evaluation shows comparable results to state of the art with high re-localization accuracy.\",\"PeriodicalId\":200521,\"journal\":{\"name\":\"2021 European Conference on Mobile Robots (ECMR)\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 European Conference on Mobile Robots (ECMR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ecmr50962.2021.9568810\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 European Conference on Mobile Robots (ECMR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ecmr50962.2021.9568810","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

六自由度定位正变得越来越重要,特别是在没有GPS的室内环境中。为了在这些地区定位无人机等自动驾驶车辆,需要可靠的低重量传感器自定位方法。在本文中,我们提出了一种在多边形3D地图中使用单目相机精确定位系统的方法,该地图标注了关键点和特征描述符,这些特征描述符来自激光雷达数据和相关参考图像。我们的贡献包括从具有相应参考图像的高分辨率3D点云进行离线地图计算,以及使用低成本传感器在这些地图中进行在线定位。在定位过程中,从车辆摄像头图像流中提取的特征与参考地图进行匹配。该方法具有实时定位能力,适用于精确的全局定位。评估结果与目前的技术水平相当,具有较高的再定位精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Monocular Localization in Feature-Annotated 3D Polygon Maps
Localization in six degrees of freedom is becoming increasingly relevant, especially in indoor environments where GPS is not available. To localize autonomous vehicles like UAVs in such areas, reliable methods for self-localization with low-weight sensors are required. In this paper, we present an approach to precisely localize systems with monocular cameras in polygonal 3D maps annotated with keypoints and feature descriptors computed from LiDAR data and associated reference images. Our contribution consists of offline map computation from high resolution 3D point clouds with corresponding reference images as well as online localization within these maps using low cost sensors. During localization, features extracted from the vehicle’s camera image stream are matched against the reference map. The proposed method is capable of real-time localization and suitable for precise global localization. The evaluation shows comparable results to state of the art with high re-localization accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信