{"title":"17.7用于全波段连续波毫米波高光谱成像的封装90- 300ghz发射器和115- 325ghz CMOS相干接收器","authors":"T. Chi, Min-Yu Huang, Sensen Li, Hua Wang","doi":"10.1109/ISSCC.2017.7870382","DOIUrl":null,"url":null,"abstract":"Millimeter-wave/THz hyperspectral imaging has numerous applications in security, non-destructive evaluation, material characterization, and medical diagnostics [1]. Unlike single-frequency imaging, hyperspectral imaging operates over a wide frequency range and offers spectroscopic information on each imaging pixel. This combines mm-wave/THz high-resolution imaging with spectroscopy and improves detection sensitivity and specificity. In practice, pulse-based imaging supports fast data acquisition, but requires receiver (RX) with real-time wideband sampling (>50GHz). Such instantaneous broadband imaging modality inevitably exhibits severely degraded sensitivity (due to integrated noise) and requires high-end signal sampling, both of which make it very challenging to achieve a low-cost SoC solution. On the other hand, continuous-wave (CW) imaging supports better sensitivity, especially using coherent detection method with a low IF bandwidth [2–5]. Its operation allows for the use of a simplified heterodyne receiver, enabling silicon-based implementations of the entire imaging system. However, there are limited mm-wave/THz integrated electronic systems available that support CW hyperspectral imaging with a large bandwidth (BW), sufficient output power (Pout), and high sensitivity. Some existing CW transmitters (TX) use the harmonics for wideband coverage, which cannot support full-band scanning at any frequency in the band [2]. In this paper, a full-band CW TX/RX chipset is proposed to realize a generic hyperspectral imaging system without knowing the particular band of interest. We therefore optimize its performance to achieve flat TX Pout and RX conversion gain (CG) over a broad BW. Our mm-wave/THz hyperspectral imaging system comprises a 90-to-300GHz TX with a ±2dB Pout variation using a distributed quadrupler architecture and a 115-to-325GHz 4th-subharmonic coherent RX with −115dBm sensitivity (1kHz RBW) using high-order filter-based matching networks (MNs). The TX and RX chips are flip-chip integrated with wideband vivaldi antennas on low-cost organic LCP (liquid crystal polymer) substrates. This packaged wideband system offers a promising solution for low-cost field-deployable hyperspectral imaging.","PeriodicalId":269679,"journal":{"name":"2017 IEEE International Solid-State Circuits Conference (ISSCC)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"54","resultStr":"{\"title\":\"17.7 A packaged 90-to-300GHz transmitter and 115-to-325GHz coherent receiver in CMOS for full-band continuous-wave mm-wave hyperspectral imaging\",\"authors\":\"T. Chi, Min-Yu Huang, Sensen Li, Hua Wang\",\"doi\":\"10.1109/ISSCC.2017.7870382\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Millimeter-wave/THz hyperspectral imaging has numerous applications in security, non-destructive evaluation, material characterization, and medical diagnostics [1]. Unlike single-frequency imaging, hyperspectral imaging operates over a wide frequency range and offers spectroscopic information on each imaging pixel. This combines mm-wave/THz high-resolution imaging with spectroscopy and improves detection sensitivity and specificity. In practice, pulse-based imaging supports fast data acquisition, but requires receiver (RX) with real-time wideband sampling (>50GHz). Such instantaneous broadband imaging modality inevitably exhibits severely degraded sensitivity (due to integrated noise) and requires high-end signal sampling, both of which make it very challenging to achieve a low-cost SoC solution. On the other hand, continuous-wave (CW) imaging supports better sensitivity, especially using coherent detection method with a low IF bandwidth [2–5]. Its operation allows for the use of a simplified heterodyne receiver, enabling silicon-based implementations of the entire imaging system. However, there are limited mm-wave/THz integrated electronic systems available that support CW hyperspectral imaging with a large bandwidth (BW), sufficient output power (Pout), and high sensitivity. Some existing CW transmitters (TX) use the harmonics for wideband coverage, which cannot support full-band scanning at any frequency in the band [2]. In this paper, a full-band CW TX/RX chipset is proposed to realize a generic hyperspectral imaging system without knowing the particular band of interest. We therefore optimize its performance to achieve flat TX Pout and RX conversion gain (CG) over a broad BW. Our mm-wave/THz hyperspectral imaging system comprises a 90-to-300GHz TX with a ±2dB Pout variation using a distributed quadrupler architecture and a 115-to-325GHz 4th-subharmonic coherent RX with −115dBm sensitivity (1kHz RBW) using high-order filter-based matching networks (MNs). The TX and RX chips are flip-chip integrated with wideband vivaldi antennas on low-cost organic LCP (liquid crystal polymer) substrates. This packaged wideband system offers a promising solution for low-cost field-deployable hyperspectral imaging.\",\"PeriodicalId\":269679,\"journal\":{\"name\":\"2017 IEEE International Solid-State Circuits Conference (ISSCC)\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"54\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE International Solid-State Circuits Conference (ISSCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISSCC.2017.7870382\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Solid-State Circuits Conference (ISSCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSCC.2017.7870382","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
17.7 A packaged 90-to-300GHz transmitter and 115-to-325GHz coherent receiver in CMOS for full-band continuous-wave mm-wave hyperspectral imaging
Millimeter-wave/THz hyperspectral imaging has numerous applications in security, non-destructive evaluation, material characterization, and medical diagnostics [1]. Unlike single-frequency imaging, hyperspectral imaging operates over a wide frequency range and offers spectroscopic information on each imaging pixel. This combines mm-wave/THz high-resolution imaging with spectroscopy and improves detection sensitivity and specificity. In practice, pulse-based imaging supports fast data acquisition, but requires receiver (RX) with real-time wideband sampling (>50GHz). Such instantaneous broadband imaging modality inevitably exhibits severely degraded sensitivity (due to integrated noise) and requires high-end signal sampling, both of which make it very challenging to achieve a low-cost SoC solution. On the other hand, continuous-wave (CW) imaging supports better sensitivity, especially using coherent detection method with a low IF bandwidth [2–5]. Its operation allows for the use of a simplified heterodyne receiver, enabling silicon-based implementations of the entire imaging system. However, there are limited mm-wave/THz integrated electronic systems available that support CW hyperspectral imaging with a large bandwidth (BW), sufficient output power (Pout), and high sensitivity. Some existing CW transmitters (TX) use the harmonics for wideband coverage, which cannot support full-band scanning at any frequency in the band [2]. In this paper, a full-band CW TX/RX chipset is proposed to realize a generic hyperspectral imaging system without knowing the particular band of interest. We therefore optimize its performance to achieve flat TX Pout and RX conversion gain (CG) over a broad BW. Our mm-wave/THz hyperspectral imaging system comprises a 90-to-300GHz TX with a ±2dB Pout variation using a distributed quadrupler architecture and a 115-to-325GHz 4th-subharmonic coherent RX with −115dBm sensitivity (1kHz RBW) using high-order filter-based matching networks (MNs). The TX and RX chips are flip-chip integrated with wideband vivaldi antennas on low-cost organic LCP (liquid crystal polymer) substrates. This packaged wideband system offers a promising solution for low-cost field-deployable hyperspectral imaging.