{"title":"基于递归神经网络的工具磨损实时估计","authors":"R. Colbaugh, K. Glass","doi":"10.1109/ISIC.1995.525083","DOIUrl":null,"url":null,"abstract":"This paper presents a robust strategy for estimating tool wear in metal cutting operations. The proposed estimation algorithm consists of two components: a recurrent neural network to model the tool wear dynamics, and a robust observer to estimate the tool wear from this model using measurements of cutting force. It is shown that the algorithm ensures that the tool wear estimation error is uniformly bounded in the presence of bounded unmodeled effects, and that the ultimate bound on this error can be made as small as desired. The proposed approach is applied to the problem of estimating tool wear in turning and is shown to provide wear estimates which are in close agreement with experimental results.","PeriodicalId":219623,"journal":{"name":"Proceedings of Tenth International Symposium on Intelligent Control","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1995-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Real-time tool wear estimation using recurrent neural networks\",\"authors\":\"R. Colbaugh, K. Glass\",\"doi\":\"10.1109/ISIC.1995.525083\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a robust strategy for estimating tool wear in metal cutting operations. The proposed estimation algorithm consists of two components: a recurrent neural network to model the tool wear dynamics, and a robust observer to estimate the tool wear from this model using measurements of cutting force. It is shown that the algorithm ensures that the tool wear estimation error is uniformly bounded in the presence of bounded unmodeled effects, and that the ultimate bound on this error can be made as small as desired. The proposed approach is applied to the problem of estimating tool wear in turning and is shown to provide wear estimates which are in close agreement with experimental results.\",\"PeriodicalId\":219623,\"journal\":{\"name\":\"Proceedings of Tenth International Symposium on Intelligent Control\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1995-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of Tenth International Symposium on Intelligent Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISIC.1995.525083\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of Tenth International Symposium on Intelligent Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIC.1995.525083","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Real-time tool wear estimation using recurrent neural networks
This paper presents a robust strategy for estimating tool wear in metal cutting operations. The proposed estimation algorithm consists of two components: a recurrent neural network to model the tool wear dynamics, and a robust observer to estimate the tool wear from this model using measurements of cutting force. It is shown that the algorithm ensures that the tool wear estimation error is uniformly bounded in the presence of bounded unmodeled effects, and that the ultimate bound on this error can be made as small as desired. The proposed approach is applied to the problem of estimating tool wear in turning and is shown to provide wear estimates which are in close agreement with experimental results.