采用线性直流作动器的主动防震系统研究

A. Abakumov, D. Randin
{"title":"采用线性直流作动器的主动防震系统研究","authors":"A. Abakumov, D. Randin","doi":"10.1109/FAREASTCON.2018.8602778","DOIUrl":null,"url":null,"abstract":"This paper dwells upon the efficiency of active vibration-protection systems with a controllable rigidity element, which is a linear DC motor (LDCM). For the adopted single-mass simulation model with the paper-mentioned assumption, we have obtained mathematical models written as transfer functions (TF) for the disturbance/control channel. Based on the formulas derived, we generated structural diagrams to study the properties of closed and open systems. We designed the structure of an active closed vibration-protection system including an LDCM, a controllable converter, a controller, and an acceleration sensor for the protected object. The system was modelled mathematically. A controller was synthesized with due account of the required dynamic properties of this closed system. We further tested this system for efficiency and drafted guidelines on its use.","PeriodicalId":177690,"journal":{"name":"2018 International Multi-Conference on Industrial Engineering and Modern Technologies (FarEastCon)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Studying an Active Vibration-Protection System with a Linear DC Actuators\",\"authors\":\"A. Abakumov, D. Randin\",\"doi\":\"10.1109/FAREASTCON.2018.8602778\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper dwells upon the efficiency of active vibration-protection systems with a controllable rigidity element, which is a linear DC motor (LDCM). For the adopted single-mass simulation model with the paper-mentioned assumption, we have obtained mathematical models written as transfer functions (TF) for the disturbance/control channel. Based on the formulas derived, we generated structural diagrams to study the properties of closed and open systems. We designed the structure of an active closed vibration-protection system including an LDCM, a controllable converter, a controller, and an acceleration sensor for the protected object. The system was modelled mathematically. A controller was synthesized with due account of the required dynamic properties of this closed system. We further tested this system for efficiency and drafted guidelines on its use.\",\"PeriodicalId\":177690,\"journal\":{\"name\":\"2018 International Multi-Conference on Industrial Engineering and Modern Technologies (FarEastCon)\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 International Multi-Conference on Industrial Engineering and Modern Technologies (FarEastCon)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FAREASTCON.2018.8602778\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Multi-Conference on Industrial Engineering and Modern Technologies (FarEastCon)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FAREASTCON.2018.8602778","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文研究了具有可控刚度元件的直线直流电动机主动振动保护系统的效率。对于采用上述假设的单质量仿真模型,我们得到了扰动/控制通道的传递函数(TF)数学模型。在导出公式的基础上,我们生成了结构图来研究闭系统和开系统的性质。设计了一种主动闭式振动保护系统结构,包括LDCM、可控变换器、控制器和被保护对象的加速度传感器。这个系统是用数学方法建立的。在充分考虑该封闭系统所需的动态特性的基础上,合成了一个控制器。我们进一步测试了该系统的效率,并起草了使用指南。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Studying an Active Vibration-Protection System with a Linear DC Actuators
This paper dwells upon the efficiency of active vibration-protection systems with a controllable rigidity element, which is a linear DC motor (LDCM). For the adopted single-mass simulation model with the paper-mentioned assumption, we have obtained mathematical models written as transfer functions (TF) for the disturbance/control channel. Based on the formulas derived, we generated structural diagrams to study the properties of closed and open systems. We designed the structure of an active closed vibration-protection system including an LDCM, a controllable converter, a controller, and an acceleration sensor for the protected object. The system was modelled mathematically. A controller was synthesized with due account of the required dynamic properties of this closed system. We further tested this system for efficiency and drafted guidelines on its use.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信