基于遗传算法的计算机化学优化

Martin Ferenc Dömény, Melánia Puskás, L. Kovács, D. Drexler
{"title":"基于遗传算法的计算机化学优化","authors":"Martin Ferenc Dömény, Melánia Puskás, L. Kovács, D. Drexler","doi":"10.1109/SACI58269.2023.10158619","DOIUrl":null,"url":null,"abstract":"The combination of medicine with engineering has great potential. The currently used chemotherapy treatments usually use maximal tolerable doses, which can lead to harmful side effects. By using a mathematical approach, we are able to personalize chemotherapy treatments, using unique patient parameters. We propose an algorithm that is capable of generating a chemotherapy treatment plan to cure cancer patients. The objective of the algorithm is to create a treatment that shrinks the tumor while minimizing the injected doses to decrease treatment costs and prevent drug toxicity. In this paper, we used a genetic algorithm to find the optimal treatment. First, we optimized the therapy on a single patient, later we carried out therapy optimization on a population with predefined ranges for the patient model parameters. The parameters are acquired from in vivo mice experiments through parametric identification. According to the results, the generated treatment produced higher survival rates with slightly higher doses compared to the standard clinically used treatment.","PeriodicalId":339156,"journal":{"name":"2023 IEEE 17th International Symposium on Applied Computational Intelligence and Informatics (SACI)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"In silico chemotherapy optimization with genetic algorithm\",\"authors\":\"Martin Ferenc Dömény, Melánia Puskás, L. Kovács, D. Drexler\",\"doi\":\"10.1109/SACI58269.2023.10158619\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The combination of medicine with engineering has great potential. The currently used chemotherapy treatments usually use maximal tolerable doses, which can lead to harmful side effects. By using a mathematical approach, we are able to personalize chemotherapy treatments, using unique patient parameters. We propose an algorithm that is capable of generating a chemotherapy treatment plan to cure cancer patients. The objective of the algorithm is to create a treatment that shrinks the tumor while minimizing the injected doses to decrease treatment costs and prevent drug toxicity. In this paper, we used a genetic algorithm to find the optimal treatment. First, we optimized the therapy on a single patient, later we carried out therapy optimization on a population with predefined ranges for the patient model parameters. The parameters are acquired from in vivo mice experiments through parametric identification. According to the results, the generated treatment produced higher survival rates with slightly higher doses compared to the standard clinically used treatment.\",\"PeriodicalId\":339156,\"journal\":{\"name\":\"2023 IEEE 17th International Symposium on Applied Computational Intelligence and Informatics (SACI)\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE 17th International Symposium on Applied Computational Intelligence and Informatics (SACI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SACI58269.2023.10158619\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE 17th International Symposium on Applied Computational Intelligence and Informatics (SACI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SACI58269.2023.10158619","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

医学与工程学的结合具有巨大的潜力。目前使用的化疗通常使用最大耐受剂量,这可能导致有害的副作用。通过使用数学方法,我们能够个性化化疗治疗,使用独特的患者参数。我们提出了一种能够生成化疗治疗计划的算法来治愈癌症患者。该算法的目标是创造一种缩小肿瘤的治疗方法,同时最大限度地减少注射剂量,以降低治疗费用并防止药物毒性。在本文中,我们使用遗传算法来寻找最优的治疗方法。首先,我们对单个患者进行了治疗优化,然后我们对具有预定义范围的患者模型参数的人群进行了治疗优化。参数通过参数识别从小鼠体内实验中获得。根据结果,与临床使用的标准治疗相比,生成的治疗在剂量略高的情况下产生了更高的存活率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
In silico chemotherapy optimization with genetic algorithm
The combination of medicine with engineering has great potential. The currently used chemotherapy treatments usually use maximal tolerable doses, which can lead to harmful side effects. By using a mathematical approach, we are able to personalize chemotherapy treatments, using unique patient parameters. We propose an algorithm that is capable of generating a chemotherapy treatment plan to cure cancer patients. The objective of the algorithm is to create a treatment that shrinks the tumor while minimizing the injected doses to decrease treatment costs and prevent drug toxicity. In this paper, we used a genetic algorithm to find the optimal treatment. First, we optimized the therapy on a single patient, later we carried out therapy optimization on a population with predefined ranges for the patient model parameters. The parameters are acquired from in vivo mice experiments through parametric identification. According to the results, the generated treatment produced higher survival rates with slightly higher doses compared to the standard clinically used treatment.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信