复贝塞尔算子Cauchy问题的多项式解

G. Hile, A. Stanoyevitch
{"title":"复贝塞尔算子Cauchy问题的多项式解","authors":"G. Hile, A. Stanoyevitch","doi":"10.1080/02781070500086842","DOIUrl":null,"url":null,"abstract":"We investigate Cauchy problems for complex differential equations of the form , where is a Bessel differential operator in the “time variable”, and a linear differential operator in the “space variables”, possibly also involving Bessel operators. We establish conditions for existence and uniqueness of polynomial solutions whenever the Cauchy data is polynomial, and we give explicit formulas for these solutions. When the Cauchy data consists of monomials, these polynomial solutions are analogous to the heat polynomials for the heat equation.","PeriodicalId":272508,"journal":{"name":"Complex Variables, Theory and Application: An International Journal","volume":"201 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Polynomial solutions to Cauchy problems for complex Bessel operators\",\"authors\":\"G. Hile, A. Stanoyevitch\",\"doi\":\"10.1080/02781070500086842\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We investigate Cauchy problems for complex differential equations of the form , where is a Bessel differential operator in the “time variable”, and a linear differential operator in the “space variables”, possibly also involving Bessel operators. We establish conditions for existence and uniqueness of polynomial solutions whenever the Cauchy data is polynomial, and we give explicit formulas for these solutions. When the Cauchy data consists of monomials, these polynomial solutions are analogous to the heat polynomials for the heat equation.\",\"PeriodicalId\":272508,\"journal\":{\"name\":\"Complex Variables, Theory and Application: An International Journal\",\"volume\":\"201 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Complex Variables, Theory and Application: An International Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/02781070500086842\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Complex Variables, Theory and Application: An International Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/02781070500086842","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

我们研究了复微分方程的柯西问题,其中“时间变量”是一个贝塞尔微分算子,“空间变量”是一个线性微分算子,可能也涉及贝塞尔算子。本文建立了柯西数据为多项式时多项式解的存在唯一性条件,并给出了这些解的显式公式。当柯西数据由单项式组成时,这些多项式解类似于热方程的热多项式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Polynomial solutions to Cauchy problems for complex Bessel operators
We investigate Cauchy problems for complex differential equations of the form , where is a Bessel differential operator in the “time variable”, and a linear differential operator in the “space variables”, possibly also involving Bessel operators. We establish conditions for existence and uniqueness of polynomial solutions whenever the Cauchy data is polynomial, and we give explicit formulas for these solutions. When the Cauchy data consists of monomials, these polynomial solutions are analogous to the heat polynomials for the heat equation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信