利用极限学习机绘制农业耕作实践图

Dennis Lee
{"title":"利用极限学习机绘制农业耕作实践图","authors":"Dennis Lee","doi":"10.1109/Agro-Geoinformatics.2019.8820689","DOIUrl":null,"url":null,"abstract":"In this paper, an efficient classifier based on extreme learning machine (ELM) is proposed to use for mapping agricultural tillage practices from hyperspectral remote sensing imagery. The kernel version, called kernel ELM (KELM), is implemented due to its powerfulness. To utilize spatial information of an image, a spatial convolution filter is adopted to generate spatial-spectral features of a hyperspectral pixel by incorporating its surrounding pixels, which are the actual inputs to the KELM. Experimental results using airborne hyperspectral images demonstrate that the KELM can outperform other classic methods, such as support vector machine and random forest.","PeriodicalId":143731,"journal":{"name":"2019 8th International Conference on Agro-Geoinformatics (Agro-Geoinformatics)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Mapping Agricultural Tillage Practices Using Extreme Learning Machine\",\"authors\":\"Dennis Lee\",\"doi\":\"10.1109/Agro-Geoinformatics.2019.8820689\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, an efficient classifier based on extreme learning machine (ELM) is proposed to use for mapping agricultural tillage practices from hyperspectral remote sensing imagery. The kernel version, called kernel ELM (KELM), is implemented due to its powerfulness. To utilize spatial information of an image, a spatial convolution filter is adopted to generate spatial-spectral features of a hyperspectral pixel by incorporating its surrounding pixels, which are the actual inputs to the KELM. Experimental results using airborne hyperspectral images demonstrate that the KELM can outperform other classic methods, such as support vector machine and random forest.\",\"PeriodicalId\":143731,\"journal\":{\"name\":\"2019 8th International Conference on Agro-Geoinformatics (Agro-Geoinformatics)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 8th International Conference on Agro-Geoinformatics (Agro-Geoinformatics)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/Agro-Geoinformatics.2019.8820689\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 8th International Conference on Agro-Geoinformatics (Agro-Geoinformatics)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/Agro-Geoinformatics.2019.8820689","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文提出了一种基于极限学习机(ELM)的高效分类器,用于高光谱遥感影像的农业耕作实践制图。内核版本,称为内核ELM (KELM),由于其功能强大而得以实现。为了利用图像的空间信息,采用空间卷积滤波器,将高光谱像元的周围像元作为KELM的实际输入,合并生成高光谱像元的空间光谱特征。基于机载高光谱图像的实验结果表明,KELM方法优于支持向量机和随机森林等经典方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mapping Agricultural Tillage Practices Using Extreme Learning Machine
In this paper, an efficient classifier based on extreme learning machine (ELM) is proposed to use for mapping agricultural tillage practices from hyperspectral remote sensing imagery. The kernel version, called kernel ELM (KELM), is implemented due to its powerfulness. To utilize spatial information of an image, a spatial convolution filter is adopted to generate spatial-spectral features of a hyperspectral pixel by incorporating its surrounding pixels, which are the actual inputs to the KELM. Experimental results using airborne hyperspectral images demonstrate that the KELM can outperform other classic methods, such as support vector machine and random forest.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信