综合集成过采样和基于集成树的机器学习在乳腺癌诊断中的类失衡问题

Slamet Sudaryanto N, M. Purnomo, D. Purwitasari, E. M. Yuniarno
{"title":"综合集成过采样和基于集成树的机器学习在乳腺癌诊断中的类失衡问题","authors":"Slamet Sudaryanto N, M. Purnomo, D. Purwitasari, E. M. Yuniarno","doi":"10.1109/CENIM56801.2022.10037251","DOIUrl":null,"url":null,"abstract":"The Wisconsin Breast Cancer Database dataset describes the imbalanced class. The imbalanced class will produce accuracy that only favors the majority class but not the minority class. Several ensemble oversampling methods are SMOTE and Random Over Sampling. Meanwhile, the tree-based machine learning ensemble used is Random Forest, Adaptive Boosting, and eXtreme Gradient Boosting. At the level 1 ensemble stage, one of the ensemble models with the best performance will be selected as input for the level 2 ensemble process. The level 2 ensemble is a boosting ensemble, where the results of the best ensemble model chosen at the level 1 ensemble will be used as the base model for boosting the XGBoost algorithm. The results were tested with 10 Fold Cross Validation of 0.981, Accuracy 0.987, Recall 0.980 and Precision 0.982. The performance of our proposed framework outperforms several recent classification studies in the breast cancer domain.","PeriodicalId":118934,"journal":{"name":"2022 International Conference on Computer Engineering, Network, and Intelligent Multimedia (CENIM)","volume":"96 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synthesis Ensemble Oversampling and Ensemble Tree-Based Machine Learning for Class Imbalance Problem in Breast Cancer Diagnosis\",\"authors\":\"Slamet Sudaryanto N, M. Purnomo, D. Purwitasari, E. M. Yuniarno\",\"doi\":\"10.1109/CENIM56801.2022.10037251\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Wisconsin Breast Cancer Database dataset describes the imbalanced class. The imbalanced class will produce accuracy that only favors the majority class but not the minority class. Several ensemble oversampling methods are SMOTE and Random Over Sampling. Meanwhile, the tree-based machine learning ensemble used is Random Forest, Adaptive Boosting, and eXtreme Gradient Boosting. At the level 1 ensemble stage, one of the ensemble models with the best performance will be selected as input for the level 2 ensemble process. The level 2 ensemble is a boosting ensemble, where the results of the best ensemble model chosen at the level 1 ensemble will be used as the base model for boosting the XGBoost algorithm. The results were tested with 10 Fold Cross Validation of 0.981, Accuracy 0.987, Recall 0.980 and Precision 0.982. The performance of our proposed framework outperforms several recent classification studies in the breast cancer domain.\",\"PeriodicalId\":118934,\"journal\":{\"name\":\"2022 International Conference on Computer Engineering, Network, and Intelligent Multimedia (CENIM)\",\"volume\":\"96 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 International Conference on Computer Engineering, Network, and Intelligent Multimedia (CENIM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CENIM56801.2022.10037251\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Computer Engineering, Network, and Intelligent Multimedia (CENIM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CENIM56801.2022.10037251","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

威斯康星乳腺癌数据库数据集描述了不平衡的类别。不平衡的阶级将产生只有利于多数阶级而不是少数阶级的准确性。集合过采样方法有SMOTE和随机过采样。同时,基于树的机器学习集成使用随机森林、自适应增强和极端梯度增强。在第一级集成阶段,将选择一个性能最好的集成模型作为第二级集成过程的输入。第2级集成是一个增强集成,在第1级集成中选择的最佳集成模型的结果将用作增强XGBoost算法的基础模型。结果经10倍交叉验证为0.981,正确率0.987,召回率0.980,精密度0.982。我们提出的框架的性能优于最近在乳腺癌领域的几个分类研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Synthesis Ensemble Oversampling and Ensemble Tree-Based Machine Learning for Class Imbalance Problem in Breast Cancer Diagnosis
The Wisconsin Breast Cancer Database dataset describes the imbalanced class. The imbalanced class will produce accuracy that only favors the majority class but not the minority class. Several ensemble oversampling methods are SMOTE and Random Over Sampling. Meanwhile, the tree-based machine learning ensemble used is Random Forest, Adaptive Boosting, and eXtreme Gradient Boosting. At the level 1 ensemble stage, one of the ensemble models with the best performance will be selected as input for the level 2 ensemble process. The level 2 ensemble is a boosting ensemble, where the results of the best ensemble model chosen at the level 1 ensemble will be used as the base model for boosting the XGBoost algorithm. The results were tested with 10 Fold Cross Validation of 0.981, Accuracy 0.987, Recall 0.980 and Precision 0.982. The performance of our proposed framework outperforms several recent classification studies in the breast cancer domain.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信