公理系统

Alan, Christensen Beth, Elena Dave, Beth Alan, Chris, Fred Dave, Chris Alan, Beth, Fred Elena, Dave Alan, Elena, Fred, Elena Alan, Dave, Fred Beth
{"title":"公理系统","authors":"Alan, Christensen Beth, Elena Dave, Beth Alan, Chris, Fred Dave, Chris Alan, Beth, Fred Elena, Dave Alan, Elena, Fred, Elena Alan, Dave, Fred Beth","doi":"10.1017/9781108303866.002","DOIUrl":null,"url":null,"abstract":"Notice that in the second example, the axioms defined a new term (“identity”). This isn’t an undefined term because the axiom includes a definition. Also, these axioms refer to basic set theory that you learned in Discrete Math. For our purposes, we will assume all of those basic set theory terms are known. It is possible to view set theory itself as another axiomatic system, but that is beyond the scope of this course.","PeriodicalId":137825,"journal":{"name":"Fast Track to Forcing","volume":"242 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Axiomatic Systems\",\"authors\":\"Alan, Christensen Beth, Elena Dave, Beth Alan, Chris, Fred Dave, Chris Alan, Beth, Fred Elena, Dave Alan, Elena, Fred, Elena Alan, Dave, Fred Beth\",\"doi\":\"10.1017/9781108303866.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Notice that in the second example, the axioms defined a new term (“identity”). This isn’t an undefined term because the axiom includes a definition. Also, these axioms refer to basic set theory that you learned in Discrete Math. For our purposes, we will assume all of those basic set theory terms are known. It is possible to view set theory itself as another axiomatic system, but that is beyond the scope of this course.\",\"PeriodicalId\":137825,\"journal\":{\"name\":\"Fast Track to Forcing\",\"volume\":\"242 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fast Track to Forcing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1017/9781108303866.002\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fast Track to Forcing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/9781108303866.002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

注意,在第二个示例中,公理定义了一个新术语(“identity”)。这不是一个未定义项,因为公理包含了一个定义。同样,这些公理涉及到你们在离散数学中学到的基本集合理论。为了我们的目的,我们假设所有这些基本的集合理论术语都是已知的。可以将集合论本身看作另一个公理系统,但这超出了本课程的范围。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Axiomatic Systems
Notice that in the second example, the axioms defined a new term (“identity”). This isn’t an undefined term because the axiom includes a definition. Also, these axioms refer to basic set theory that you learned in Discrete Math. For our purposes, we will assume all of those basic set theory terms are known. It is possible to view set theory itself as another axiomatic system, but that is beyond the scope of this course.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信